it is a set of lines corresponding to photon emission wavelengths.
A fruit that looks like an avocado is called a chayote.
The stick insect is an animal that looks like a stick.
A bird that looks like a seagull is called a tern.
The crane fly is a bug that looks like a giant mosquito.
A bird that looks like an owl is called a "hawk owl."
To identify an unknown sample by its emission spectrum
Niels Bohr studied the emission lines of Hydrogen.
No, an atomic emission spectrum is not a continuous range of colors. It consists of discrete lines of specific wavelengths corresponding to the emission of light from excited atoms when they return to lower energy levels. Each element has a unique atomic emission spectrum due to its unique arrangement of electrons.
The emission of sodium lies in the yellow region
The emission spectrum of elements is a unique pattern of colored lines produced when an element is heated or excited. Each element has its own distinct emission spectrum, which can be used to identify the element.
No. It is not possible for two metals to have the same emission spectrum. For metals to have the same emission spectrum, they would need for their electrons to have duplicate orbitals. That would be impossible due to the exclusion principle.
The number of lines in the emission spectrum is the same as in the absorption spectrum for a given element. The difference lies in the intensity of these lines; in emission, they represent light being emitted, while in absorption, they represent light being absorbed.
The difference between continuous spectrum and the atomic emission espectrum of an element is that in emission spectrum, only certain specific frequencies of light are emitted while in a continuous spectrum, a continuous range of colors are seen in the visible light.
Identify elements
The absorption spectrum of an element have lines in the same places as in its emission spectrum because each line in the emission spectrum corresponds to a specific transition of electrons between energy levels. When light is absorbed by the element, electrons move from lower energy levels to higher ones, creating the same lines in the absorption spectrum as the emission spectrum. The frequencies of light absorbed and emitted are the same for a specific element, resulting in matching lines.
Every element can produce an emission spectrum, if it is sufficiently heated. Of the 4 elements that you mention, neon is the most useful, in terms of its emission spectrum, and it is used in a certain type of lighting.
No.