answersLogoWhite

0

The epicenter is directly above the point where an earthquake originated. Shock waves are produced and propagate spherically along the epicenter.

User Avatar

Wiki User

10y ago

What else can I help you with?

Continue Learning about Earth Science

What are source earthquake waves?

Source earthquake waves are seismic waves produced directly from the earthquake's source, such as the initial rupture of rocks along a fault. These waves include P-waves and S-waves that travel through the Earth and are used to locate and study earthquakes. Source earthquake waves provide valuable information about the earthquake's characteristics and help in assessing its impact.


What is the relationship between lag time and distance from an earthquake's epicenter?

The lag time between the arrival of primary (P-wave) and secondary (S-wave) seismic waves increases with distance from an earthquake's epicenter. This relationship is due to the differing speeds at which these waves travel through the Earth's layers. By measuring this lag time, scientists can estimate the distance to the earthquake's epicenter.


Why does the greatest shaking of the ground occur near an earthquake's epicenter?

The greatest shaking near an earthquake's epicenter occurs because the seismic waves have less distance to travel, resulting in less attenuation and energy loss. This leads to stronger shaking at locations closer to the source of the earthquake.


Why does an area that is far from the epicenter of an earthquake generally has a lower intensity than an area closer to the epicenter?

An area closer to the epicenter of an earthquake experiences higher intensity because the seismic waves have less distance to travel, so their energy is concentrated. As you move further away from the epicenter, the intensity decreases due to the attenuation of the seismic waves over distance. The energy of the waves spreads out, resulting in lower intensity in areas far from the epicenter.


What difference between P-waves and S-waves is used to find an earthquake's epicenter?

The difference in arrival times of P-waves and S-waves can be used to find an earthquake's epicenter. P-waves travel faster than S-waves, so by measuring the time lag between the arrival of the two wave types at different seismic stations, scientists can triangulate the epicenter of the earthquake.

Related Questions

A travel-time graph can be used to find?

the distance from a epicenter to an earthquake :)


In what diection does a seismic wave travel?

Seismic waves travel in all directins radiating out from the Earthquake's epicenter and/or focus.


What can a travel time graph can be used to find?

A travel time graph can be used to find the distance from the epicenter of an earthquake.


Where would be intensity higher near or away epicenter?

Intensity is typically higher near the epicenter of an earthquake. This is because the seismic waves have less distance to travel, leading to stronger shaking in that area. As you move farther away from the epicenter, the energy dissipates, resulting in lower intensity and less noticeable effects. Thus, the impact of the earthquake diminishes with distance from the epicenter.


What are source earthquake waves?

Source earthquake waves are seismic waves produced directly from the earthquake's source, such as the initial rupture of rocks along a fault. These waves include P-waves and S-waves that travel through the Earth and are used to locate and study earthquakes. Source earthquake waves provide valuable information about the earthquake's characteristics and help in assessing its impact.


What is a seismic travel time curve?

A seismic travel time curve describes the relation between the travel time of a seismic wave and the epicentral distance. It is used to calculate the calculate the distance of the earthquake's epicenter from the seismograph.


A travel-time graph can be used to find the?

The distance of an earthquake epicenter from a seismic station. Using the Three point method, the distance from 3 seismic stations are used to locate the epicenter by triangulation.


A travel-time graph can be used to find the .?

The distance of an earthquake epicenter from a seismic station. Using the Three point method, the distance from 3 seismic stations are used to locate the epicenter by triangulation.


What is the relationship between lag time and distance from an earthquake's epicenter?

The lag time between the arrival of primary (P-wave) and secondary (S-wave) seismic waves increases with distance from an earthquake's epicenter. This relationship is due to the differing speeds at which these waves travel through the Earth's layers. By measuring this lag time, scientists can estimate the distance to the earthquake's epicenter.


Why does the greatest shaking of the ground occur near an earthquake's epicenter?

The greatest shaking near an earthquake's epicenter occurs because the seismic waves have less distance to travel, resulting in less attenuation and energy loss. This leads to stronger shaking at locations closer to the source of the earthquake.


Why can you feel earthquakes miles away?

You can feel earthquakes miles away because seismic waves produced by the earthquake travel through the Earth's crust and can be felt at the surface. These waves can travel long distances and are strong enough to be detected by people even at a distance from the epicenter of the earthquake.


Why does an area that is far from the epicenter of an earthquake generally has a lower intensity than an area closer to the epicenter?

An area closer to the epicenter of an earthquake experiences higher intensity because the seismic waves have less distance to travel, so their energy is concentrated. As you move further away from the epicenter, the intensity decreases due to the attenuation of the seismic waves over distance. The energy of the waves spreads out, resulting in lower intensity in areas far from the epicenter.