CH2O because you have to divide by the number they all have in common which is 6
The molecular formula of a compound is a multiple of its empirical formula, so the molecular formula is a multiple (in this case, 6 times) of CH2O, giving C6H12O6. This molecular formula corresponds to glucose, a common sugar.
The chemical compound for glucose is C6H12O6, representing its molecular formula.
To find the molecular formula, you first need to calculate the empirical formula mass of C3H4. C3H4 has an empirical formula weight of 40 g/mol. If the molecular weight is 120 g/mol, then the molecular formula would be 3 times the empirical formula, so the molecular formula would be C9H12.
The empirical formula of a compound with the molecular formula C12H8 is CH2. This is determined by dividing the subscripts in the molecular formula by the greatest common factor (in this case, 4) to obtain the simplest whole-number ratio of atoms in the compound.
The molecular formula of a compound with an empirical formula of CH is likely to be CH, as there is only one carbon atom and one hydrogen atom in the empirical formula. In this case, the empirical formula is also the molecular formula.
The empirical formula is the lowest whole integer representation of the molecular formula. For example, the empirical formula for C6H12O6 would be CH2O.
The molecular formula of a compound is a multiple of its empirical formula, so the molecular formula is a multiple (in this case, 6 times) of CH2O, giving C6H12O6. This molecular formula corresponds to glucose, a common sugar.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
A molecular formula is identical to the empirical formula, and is based on quantity of atoms of each type in the compound.The relationship between empirical and molecular formula is that the empirical formula is the simplest formula, and the molecular can be the same as the empirical, or some multiple of it. An example might be an empirical formula of C3H8. Its molecular formula may be C3H8 , C6H16, C9H24, etc. Looking at it the other way, if the molecular formula is C6H12O6, the empirical formula would be CH2O.
The empirical formula CH2O has a molar mass of 30 g/mol (12 g/mol for C + 2 g/mol for H + 16 g/mol for O). To find the molecular formula, which is a multiple of the empirical formula, you divide the molar mass given (180 g/mol) by the empirical formula mass (30 g/mol), giving you 6. Therefore, the molecular formula for the compound is (CH2O)6, which simplifies to C6H12O6, the molecular formula for glucose.
The empirical formula of glucose is the formula which has the lowest ratio. You can divide all three elements by 6 to give: CH2O.
The empirical formula is CH2O. To find the molecular formula, you need to calculate the empirical formula weight (30 g/mol) and divide the molecular mass (180.0 g/mol) by the empirical formula weight to get 6. This means the molecular formula is (CH2O)6, which simplifies to C6H12O6, the molecular formula of glucose.
molar mass of unknown/molar mass of empirial = # of empirical units in the molecular formula. Example: empirical formula is CH2O with a molar mass of 30. If the molar mass of the unknown is 180, then 180/30 = 6 and molecular formula will be C6H12O6
The chemical compound for glucose is C6H12O6, representing its molecular formula.
The empirical formula shows the simplest whole-number ratio of atoms in a compound, while the molecular formula gives the actual number of each type of atom present in a molecule. For example, glucose has an empirical formula of CH2O and a molecular formula of C6H12O6, showing the actual number of atoms in each molecule.