Triangulation. First, they calculate the time between the first and second - primary and secondary - seismic waves created in an earthquake and use this information to determine how far the seismometer is from the epicenter of the earthquake. A circle is drawn around the seismometer so that it is in the center and the radius is equal to the calculated distance. Using this information from three different seismometers, two more circles are drawn and the intersecting point of the three circles is where the epicenter of the earthquake is located.
At least three recording stations are needed to find the epicenter of an earthquake because each station provides data on the arrival time of seismic waves. By determining the time difference between when the waves reach each station, triangulation can be used to pinpoint the epicenter. The more stations available, the more accurate the location determination.
P waves, also called primary waves, are the first waves to be registered on a seismograph. The S waves, or secondary waves, are the second and slower wave to register on the seismograph. When locating an earthquakes epicenter seismologists take the first reading of the P wave, and then take the reading from the S wave. At the station of where the earthquake was recorded, seismologists draw a large circle from where the earthquakes epicenter could be. TO exactly located the earthquakes epicenter there needs to be at least 3 dfferent staions where the earthquake hit to determine its epicenter using the S and P time interval.
The location on Earth's surface directly above where an earthquake starts is known as the epicenter. This point is usually where the seismic waves are first detected and is typically used to determine the location of the earthquake.
The difference in arrival times of P-waves and S-waves can be used to find an earthquake's epicenter. P-waves travel faster than S-waves, so by measuring the time lag between the arrival of the two wave types at different seismic stations, scientists can triangulate the epicenter of the earthquake.
use sonarHello. I came here to find the answer too! We are both alike! But i didnt find the answer and neither will you:) Because why would i come here to give you the answr when i searched it on here.. so yea. good luck loser _l:P
i only know that it is used to measure the distnace from the epicenter
A seismograph is used to detect vibrations and motions in the Earth's crust. These tremors are usually due to friction between tectonic plates (earthquakes) or huge powerful volcanic activity. - hope that helps
At least three recording stations are needed to find the epicenter of an earthquake because each station provides data on the arrival time of seismic waves. By determining the time difference between when the waves reach each station, triangulation can be used to pinpoint the epicenter. The more stations available, the more accurate the location determination.
epicenter and seiesmic waves, find the distance and seismograph stations
they used the focus
the distance from a epicenter to an earthquake :)
A travel time graph can be used to find the distance from the epicenter of an earthquake.
Seismograph
P waves, also called primary waves, are the first waves to be registered on a seismograph. The S waves, or secondary waves, are the second and slower wave to register on the seismograph. When locating an earthquakes epicenter seismologists take the first reading of the P wave, and then take the reading from the S wave. At the station of where the earthquake was recorded, seismologists draw a large circle from where the earthquakes epicenter could be. TO exactly located the earthquakes epicenter there needs to be at least 3 dfferent staions where the earthquake hit to determine its epicenter using the S and P time interval.
The location on Earth's surface directly above where an earthquake starts is known as the epicenter. This point is usually where the seismic waves are first detected and is typically used to determine the location of the earthquake.
The distance of an earthquake epicenter from a seismic station. Using the Three point method, the distance from 3 seismic stations are used to locate the epicenter by triangulation.
The distance of an earthquake epicenter from a seismic station. Using the Three point method, the distance from 3 seismic stations are used to locate the epicenter by triangulation.