An increase in pressure and / or temperature would be needed to convert a sedimentary rock to a metamorphic rock.
Metamorphic rocks are formed from igneous, sedimentary and older metamorphic rocks that are introduced to extreme temperature and pressure. Because of the extreme temperature and pressure, rocks go through a significant chemical or physical change, turing them into metamorphic rocks.
It is more likely that igneous and metamorphic, or igneous and sedimentary rocks would have something in common than sedimentary and metamorphic. The reason is because the processes involved in making metamorphic rocks is completely different than the processes needed to make sedimentary rocks. Only high temperature, high pressure minerals such as olivine, pyroxene, amphibole can withstand these kinds of conditions. Take quartz and feldspar, two of the most abundant minerals found in sedimentary rocks, these minerals would not be found in abundance in metamorphic rocks because they are not high temperature, high pressure rocks. But the most simple answer is that all the major groups of rocks are made of minerals. Metamorphic has high pressure and Igneous does to and both made from a particle called magma.
The process in which moving sedimentary material slows down is known as deposition. This occurs when the energy needed to transport sediment decreases, causing the sediment particles to settle out and accumulate in a new location.
Heat and pressure are the two main agents needed to change a rock into metamorphic rock. Heat causes the minerals within the rock to recrystallize, while pressure creates the conditions for those new minerals to align in a specific orientation.
There are several environmental changes that can stop the development of an organic sedimentary rock. These changes include: global warming, sudden cooling, lowering of the sea levels and drastic changes in pH levels.
there are 4 bill bob and jerry and the one in abi's head she likes to call a brain Igneous, Sedimentary, and Metamorphic.
Extreme heat and pressure, like that of coal turning to diamonds. Metamorphic rocks, in turn, are then broken down or turned into molten rock, so new sedimentary, igneous, or metamorphic rocks can form.
The essential force in the metamorphic rock formation is pressure. The needed changes are driven by changes in the physical measures of temperature and pressure. As these conditions change, alterations in the composition of the minerals and textures follow.
It is more likely that igneous and metamorphic, or igneous and sedimentary rocks would have something in common than sedimentary and metamorphic. The reason is because the processes involved in making metamorphic rocks is completely different than the processes needed to make sedimentary rocks. Only high temperature, high pressure minerals such as olivine, pyroxene, amphibole can withstand these kinds of conditions. Take quartz and feldspar, two of the most abundant minerals found in sedimentary rocks, these minerals would not be found in abundance in metamorphic rocks because they are not high temperature, high pressure rocks. But the most simple answer is that all the major groups of rocks are made of minerals. Metamorphic has high pressure and Igneous does to and both made from a particle called magma.
Metamorphic rocks are formed from igneous, sedimentary and older metamorphic rocks that are introduced to extreme temperature and pressure. Because of the extreme temperature and pressure, rocks go through a significant chemical or physical change, turing them into metamorphic rocks.
It is more likely that igneous and metamorphic, or igneous and sedimentary rocks would have something in common than sedimentary and metamorphic. The reason is because the processes involved in making metamorphic rocks is completely different than the processes needed to make sedimentary rocks. Only high temperature, high pressure minerals such as olivine, pyroxene, amphibole can withstand these kinds of conditions. Take quartz and feldspar, two of the most abundant minerals found in sedimentary rocks, these minerals would not be found in abundance in metamorphic rocks because they are not high temperature, high pressure rocks. But the most simple answer is that all the major groups of rocks are made of minerals. Metamorphic has high pressure and Igneous does to and both made from a particle called magma.
It is more likely that igneous and metamorphic, or igneous and sedimentary rocks would have something in common than sedimentary and metamorphic. The reason is because the processes involved in making metamorphic rocks is completely different than the processes needed to make sedimentary rocks. Only high temperature, high pressure minerals such as olivine, pyroxene, amphibole can withstand these kinds of conditions. Take quartz and feldspar, two of the most abundant minerals found in sedimentary rocks, these minerals would not be found in abundance in metamorphic rocks because they are not high temperature, high pressure rocks. But the most simple answer is that all the major groups of rocks are made of minerals. Metamorphic has high pressure and Igneous does to and both made from a particle called magma.
Heat, erosion and pressure.
Usually it is metamorphic rocks that are formed by heat and pressure, but sedimentary rocks can too. Usually, the word 'sedimentary' means 'of sediments' which means that it is composed of lots of layers upon layers compacting down. In that case, pressure is essential, but heat isn't always needed.
It is more likely that igneous and metamorphic, or igneous and sedimentary rocks would have something in common than sedimentary and metamorphic. The reason is because the processes involved in making metamorphic rocks is completely different than the processes needed to make sedimentary rocks. Only high temperature, high pressure minerals such as olivine, pyroxene, amphibole can withstand these kinds of conditions. Take quartz and feldspar, two of the most abundant minerals found in sedimentary rocks, these minerals would not be found in abundance in metamorphic rocks because they are not high temperature, high pressure rocks. But the most simple answer is that all the major groups of rocks are made of minerals. Metamorphic has high pressure and Igneous does to and both made from a particle called magma.
it has to be melted and then has to re-solidify. Heat (lots of it) to melt the rock is what is needed.
The process in which moving sedimentary material slows down is known as deposition. This occurs when the energy needed to transport sediment decreases, causing the sediment particles to settle out and accumulate in a new location.