It subducts under the continental plate because the oceanic plate is denser.
When an ocean plate collides with a continental plate, a subduction zone occurs and forms a deep trench. An ocean plate is more dense while a continental plate is less dense which causes the ocean plate to go under the continental plate and pull the land and water down, forming a trench.
When a continental plate collides with an oceanic plate and overtakes it, the denser oceanic plate is forced underneath the continental plate in a process called subduction. This creates a deep ocean trench, volcanic arcs, and earthquakes along the boundary between the two plates. The subduction process can also lead to the formation of mountain ranges on the overriding continental plate.
A convergent boundary where an oceanic plate collides with a continental plate. This collision often results in the oceanic plate subducting beneath the continental plate due to its denser nature, leading to the formation of deep ocean trenches, volcanic arcs, and earthquakes.
When an oceanic plate collides with a continental plate, the denser oceanic plate is forced to subduct beneath the lighter continental plate. As the oceanic plate descends into the mantle, it creates a deep ocean trench at the boundary. The subduction process can result in volcanic activity, earthquakes, and the formation of mountain ranges on the overriding continental plate.
When a plate carrying oceanic crust collides with a plate carrying continental crust, the denser oceanic plate is usually subducted beneath the continental plate due to the difference in density. This can lead to the formation of mountain ranges, deep ocean trenches, and volcanic activity at the subduction zone.
When an ocean plate collides with a continental plate, a subduction zone occurs and forms a deep trench. An ocean plate is more dense while a continental plate is less dense which causes the ocean plate to go under the continental plate and pull the land and water down, forming a trench.
When an ocean plate collides with a continental plate, a subduction zone occurs and forms a deep trench. An ocean plate is more dense while a continental plate is less dense which causes the ocean plate to go under the continental plate and pull the land and water down, forming a trench.
When an ocean plate collides with a continental plate, a subduction zone occurs and forms a deep trench. An ocean plate is more dense while a continental plate is less dense which causes the ocean plate to go under the continental plate and pull the land and water down, forming a trench.
When a seafloor plate collides with a continental plate, the denser seafloor plate will typically be subducted beneath the continental plate. This process can create deep ocean trenches, volcanic arcs, and earthquakes. It may also lead to the formation of mountain ranges on the continental plate.
it subducts underneath the crustal plate
When a continental plate collides with an oceanic plate and overtakes it, the denser oceanic plate is forced underneath the continental plate in a process called subduction. This creates a deep ocean trench, volcanic arcs, and earthquakes along the boundary between the two plates. The subduction process can also lead to the formation of mountain ranges on the overriding continental plate.
The contiental cdrust is forced under the continental crust in a process called subduction.
When an oceanic plate collides with a continental plate, the denser oceanic plate usually subducts beneath the less dense continental plate due to the difference in densities. This can lead to the formation of deep oceanic trenches, volcanic arcs, and mountain ranges on the continental plate due to the intense tectonic forces generated during the collision.
Convergent plate boundaries.
it forms a trench
subduction
A convergent boundary where an oceanic plate collides with a continental plate. This collision often results in the oceanic plate subducting beneath the continental plate due to its denser nature, leading to the formation of deep ocean trenches, volcanic arcs, and earthquakes.