A current carrying conductor, such as a metal wire, will produce a magnetic field around it because of the motion of charge within the wire itself. This motion produces or sets up a magnetic field around the wire in the form of concentric circles.
This electromagnetic effect is described in physics by the Biot-Savart Law, an experimentally deduced inverse-square law. The effect is also described by Ampère's Law, which is derived from the Biot-Savart Law. This law relates magnetic field and current.
Also, a magnetic field that is set up by an electrical current will produce a magnetic force. This force depends on the rate of charge transfer and the magnetic field.
The force produced by a current-carrying wire depends on the length, the magnetic field, and the current, which is the charge flow per unit of time.
When an electric current flows through a conductor, it creates a magnetic field around the conductor. This is due to the interaction between the moving charges (the electrons in the current) and the magnetic fields they produce. The magnetic field strength is directly proportional to the current flowing through the conductor.
Yes, an electric field can exist without a magnetic field. Electric fields are produced by electric charges, while magnetic fields are produced by moving electric charges. So, in situations where there are stationary charges or no current flow, only an electric field is present.
Yes. An electric current is surrounded by a magnetic field, and this will affect a compass. Please note that this is more noticeable in the case of DC - for AC, the current changes all the time, it changes very quickly, and the AVERAGE value of the magnetic field is zero.
When an electric current flows through a conductor, it creates a magnetic field around the conductor. This phenomenon is described by the right-hand rule, where the direction of the magnetic field is determined by the direction of the current flow. The strength of the magnetic field is directly proportional to the amount of current flowing through the conductor.
Changing the amount of magnetic field (known as "flux") through a conductor exerts a force on charged particles (electrons in the wire). A change in magnetic field strength in a region of space induces an electric field which circles the magnetic field lines, surprisingly whether or not there is a conductor there or not. It turns out that magnetism and electricity are inherently linked, they are kind of manifestations of the same thing. If "something" has the property of electric charge, it creates an electric field. If that something moves, it creates a magnetic field.
The deflection of a magnetic compass in the presence of an electric current, is evidence that an electric current produces a magnetic field.
An electromagnet uses the interaction of electric and magnetic fields to create a magnetic field when an electric current flows through it. The electric current produces a magnetic field around the wire, and this field interacts with the magnetic field of the material inside the coil, strengthening the overall magnetic field.
The deflection of a magnetic compass in the presence of an electric current, is evidence that an electric current produces a magnetic field.
Yes, a moving electron in a magnetic field can induce an electric current. This is the principle behind electromagnetic induction, where a changing magnetic field induces an electric current in a conductor.
When an electric current flows through a conductor, it creates a magnetic field around the conductor. This is due to the movement of charged particles, such as electrons, which generate a magnetic field. The strength of the magnetic field is directly proportional to the amount of current flowing through the conductor.
The magnetic field or energy associated with the magnetic field will no longer be generated if the current is turned off.
for apex its: a quantum field, a gravitational field
An electric current creates a magnetic field because moving charges generate a magnetic field around them according to the right-hand rule. This magnetic field is perpendicular to both the direction of the current and the surrounding space. The strength of the magnetic field is dependent on the magnitude of the current.
Yes, electric current does create magnetic fields
The Magnetic field itself can do no work and is a byproduct of the electric current. The energy is stored in the current or provided by whatever drives the current.
that is a magnetic field
that is a magnetic field