there is more heat loss..
The seasons begin with Spring, Summer, Fall (Autumn), and then finally Winter. This then becomes a cycle.
The season winter comes after the season autumn.
Both winter and summer are seasons that occur annually as part of Earth's natural cycle. They both have distinct weather patterns, with winter being characterized by colder temperatures and summer by warmer temperatures. Additionally, both seasons can have positive and negative effects on nature and human activities.
The Olympics are both in Summer and Winter. And also if you are doing a compare and contrast essay this answer is for you! You can also during winter and summer order hot chocolate and iced tea. You can also have school in both summer and winter. (Summer school.) Just the same, Ice Skating is done in both winter and summer. So is swimming! Also in tropical places it can be warm. So that would mean that both winter and summer in tropical places would be warm!
Fall. Anyone would know that. Spring, Summer, Fall, Winter.
To increase the efficiency of a Rankine cycle, you can: increase the boiler pressure to increase the temperature of the steam entering the turbine, lower the condenser pressure to improve the quality of the exhaust steam, and use regenerative feedwater heating to reduce heat losses. Additionally, using superheated steam can also improve the efficiency of the cycle.
Brayton cycle: It is open cycle. Rankine cycle: It's close cycle. Brayton cycle: Mostly used in gas turbine engine. Rankine cycle: Mostly used in power generation plant. Brayton cycle: Resemble less to Carnot cycle. Rankine cycle: Resemble is more to Carnot cycle.
modified rankine cycle basically same as rankine cycle but main difference is inisentropic expansion process.we are nt expanding the styeam completely.steam is expanded up to certain level and after that it dumped in condenser due to high vacuum in condenser.the work losses by restricting the expansion of steam is very less which can be neglected.so that the stroke length of cylinder is reduced and the capitalcost of engine also reduced.engine performance is also good
carnot cycle is a very ideal cycle that isn't practical at all , 'cause we add and reject heat isothermally , a wet mixture enters the turbine so it'll cause pitting and erosion and a wet mixture enters the pump , and the pump can't deal with a 2 phases fluid rankine cycle is a practical cycle but with a very low efficiency so the main difference lies in the adding and rejecting of heat
Rankine cycle allows for practical implementation with real working fluids such as water, making it more feasible for thermal power plants compared to the idealized Carnot cycle. Rankine cycle also allows for the use of turbines and pumps which are more efficient than isothermal expansion and compression processes in the Carnot cycle. Additionally, Rankine cycle can be modified with reheating and regeneration to improve efficiency further, something the Carnot cycle cannot achieve.
Among other advantages, this pervents the vapor from condensing during its expansion which can seriusly damage he turbine blades, and improves he efficiency of the cycle, as more of the heat flow into the cycle occurs at higher temperature.
The Rankine cycle is important in thermodynamics because it is a theoretical model that represents the ideal process for converting heat into mechanical work in a power plant. The PV diagram of the Rankine cycle shows the stages of this energy conversion process, including heat input, expansion, heat rejection, and compression. By analyzing the PV diagram, engineers can optimize the efficiency of power plants by understanding how energy is transferred and transformed throughout the cycle.
The seasons begin with Spring, Summer, Fall (Autumn), and then finally Winter. This then becomes a cycle.
Rankine cycle is used in steam turbine
The Rankine cycle is the fundamental thermodynamic underpinning of the Steam_engine. It is named after William_John_Macquorn_Rankine
To increase the thermal efficiency of a Rankine cycle, you can: Increase the temperature of the heat source entering the boiler. Lower the temperature of the heat sink exiting the condenser. Improve the insulation of the system to reduce heat losses. Enhance the performance of the turbine and pump by reducing internal losses.
The condenser is used to lower the temperature of the working fluid. This lowers the pressure and condensates any left over steam, from the turbine, so it will be purely liquid before entering the pump.