answersLogoWhite

0

A degree of a monomial is simply what exponent or power the monomial is raised to. Key: ^ means "raised to the power of" -5t^2 means the degree is 2, the number is -5, and the variable which is being put to the power of, is t. the degree has a little trick, however. If there are three monomials or more, being added or subtracted, to make a polynomial, and each has a degree (lone variable has a degree of 1) and the monomial that has the highest degree represnts the whole polynomial's degree.

User Avatar

Wiki User

17y ago

What else can I help you with?

Related Questions

How do you find the degree of a monomial?

By definition, a monomial has only one unknown independent variable, usually represented by a letter of the alphabet. The exponent immediately after that symbol for the unknown is the degree of the monomial.


What is the degree of 18 monomial?

It is Eighteen


What is the degree of the monomial -2?

The monomial -2 has a degree of 0.


What is degree of monomial?

The degree of a monomial is the sum of the exponents of its variables. For example, in the monomial (3x^2y^3), the degree is (2 + 3 = 5). If a monomial has no variables, such as the constant (7), its degree is considered to be (0).


Is every monomial a polynomial?

Yes. A monomial is a zero-degree polynomial. Although the prefix poly means "several" the definition allows for any finite number of terms.


What is the degree of momomial -7x4?

The degree of a monomial is determined by the exponent of its variable. In the case of the monomial (-7x^4), the exponent of (x) is 4. Therefore, the degree of the monomial (-7x^4) is 4.


What is the degree of this monomial 7abcde?

5 is the answer (:


What is the degree of this monomial -5x10y3?

10


What is the sum of the exponents of the variables of a monomial is the of the monomial?

The degree of a term is the sum of the exponents on the variables.


What is the degree monomial of -5x10y3?

The degree of a monomial is the sum of the exponents of its variables. In the monomial (-5x^{10}y^{3}), the exponent of (x) is 10 and the exponent of (y) is 3. Adding these together gives (10 + 3 = 13). Therefore, the degree of the monomial (-5x^{10}y^{3}) is 13.


What is the monomial in one variable of degree 4?

A monomial in one variable of degree 4 is an expression that consists of a single term with a variable raised to the fourth power. An example of such a monomial is (5x^4), where 5 is the coefficient and (x) is the variable. The degree of the monomial is determined by the exponent of the variable, which in this case is 4.


Is 0 a monomial?

Zero is a whole number and definition of monomial is " a number, or a variable, or a combination of a constant and a variable"