Capacitance exists between any two conductors, current carrying or not.
270 amp
To prevent the wire from getting short circuited to ground or even to other wires.
Any two conductors separated by an insulating medium constitutes a condenser or capacitor.In case of overhead transmission lines, two conductors form the two plates of the capacitor and the air between the conductors behaves as dielectric medium. Thus an overhead transmission line can be assumed to have capacitance between the conductors throughout the length of the line. The capacitance is uniformly distributed over the length of the line and may be considered as uniform series of condensers connected between the conductors.When an alternating voltage is applied across the transmission line it draws the leading current even when supplying no load. This leading current will be in quadrature with the applied voltage and is termed as charging current. It must be noted that charging current is due to the capacitive effect between the conductors of the line and does not depend on the load. The strength of the charging currents depends on the voltage of transmission, the capacitance of the line and frequency of the ac supply. It is given by the expressionSignificance of Charging currents:Capacitance effect (responsible for charging currents) of the short transmission lines are negligible. However they are significant in medium and long distance transmission lines.In long distance transmission lines, during light loaded conditions receiving end voltage will be higher than sending end voltage. This is because of the charging currents and capacitive effect of the line
Electric current is measured using an instrument called an ammeter. The SI unit of measurement for current is the ampere, which is defined in terms of the force between parallel, current-carrying, conductors due to the interaction of their magnetic fields.
Resistor is a current a insulator is a not conductive and conductors can conduct.
The conductors of the transmission line act as a parallel plate of the capacitor and the air is just like the dielectric medium between them.A capacitor is a device used to store electrical charge and electrical energy.
There should be at least 2 meg-ohms between the current carrying conductors and between current carrying conductors and ground.
Capacitance is a physical characteristic of a pair of conductors, dependent upon the distance between them, the opposing cross-sectional areas of those conductors, and the nature of the dielectric between them, and is measured in farads.Capacitive reactance is the opposition to the flow of current of a circuit, determined by that circuit's capacitance and the frequency of the a.c. supply applied to that circuit, and is measured in ohms.
The relationship between current and capacitance in an electrical circuit is that capacitance affects the flow of current in the circuit. Capacitance is a measure of how much charge a capacitor can store, and it influences the rate at which current can flow through the circuit. A higher capacitance can result in a slower flow of current, while a lower capacitance allows for a faster flow of current.
270 amp
The relationship between capacitance and current in an electrical circuit is that capacitance affects the flow of current in the circuit. A higher capacitance means the circuit can store more charge, which can impact the current flowing through the circuit. The current in a circuit with capacitance can change over time as the capacitor charges and discharges.
there will be current that isn't carried by the current carrying conductors
The relationship between amperage and capacitance is indirect. Capacitance stores and releases electrical energy, affecting the flow of current in a circuit. Higher capacitance can lead to slower changes in current (i.e., lower frequency), while lower capacitance can result in faster changes in current.
Electric current, magnetic field intensity, length of the conductor, angle between the electric current and magnetic field
because of their magnetic field lines
ampsAnswerElectric current is measured by means of an ammeter. Electric current is expressed in amperes (symbol: A), which is defined in terms of the magnetic effect of an electric current -i.e. the force between two, parallel, current-carrying conductors.
Phase is the mathematical relationship between one or more current carrying conductors from the same power source. It isn't "used" per se.