2.7A on the primary
25A on the secondary
This is easily calculated using
P = VI
As long as we make sure we use RMS values for current and voltage.
The transformer itself does not pull current. Whatever you connect to the transformer pulls current. Whatever the output voltage of the transformer is, divide that into 600 and you get maximum current possible without burning up the transformer. At 24V that's 25 amps.
It depends on the rated voltage of its secondary.
To determine the amperage a 55 kVA transformer can provide, you can use the formula: Amps = kVA × 1000 / Voltage. For example, at a standard voltage of 400V, a 55 kVA transformer can provide approximately 79 amps (55,000 / 400 = 137.5). The actual amperage will vary depending on the specific voltage used in the application.
The primary current of a transformer depends upon the secondary current which, in turn, depends upon the load supplied by the transformer. There is not enough information in the question to determine the rated primary and secondary currents of the transformer.
Take the KVA and divide it by the voltage. 25/.230 = 109 amps. The transformer can put out up to 50% more that its rated for short durations. So you could get around 150 amps out of a 25 Kva tranformer in a worst case situation.
This typically has to do with how many amps you can safely pull from the secondary of the transformer.
2.083 amps
The amps you can get from a 500 kVA transformer would depend on the voltage of the transformer's output. To calculate amperage, you can use the formula: Amps = Power (kVA) / Voltage. For example, if the output voltage is 480V, you would get approximately 1041 amps (500 kVA / 480V).
600watts
To determine the amps for a 500 kVA transformer, you can use the formula: Amps = kVA × 1000 / (Voltage). For example, at a standard voltage of 480V, the calculation would be 500,000 VA / 480V, which equals approximately 1041.67 amps. The specific current will vary based on the voltage level used with the transformer.
The number of amps a transformer can carry on its secondary side depends on its power rating (in watts or VA) and the voltage of the secondary winding. You can calculate the current (in amps) using the formula: Amps = Watts / Volts. For example, if you have a 1000 VA transformer with a 10V secondary, it can carry 100 amps (1000 VA / 10V = 100A). Always ensure the transformer is rated for the desired load to avoid overheating or damage.
The transformer itself does not pull current. Whatever you connect to the transformer pulls current. Whatever the output voltage of the transformer is, divide that into 600 and you get maximum current possible without burning up the transformer. At 24V that's 25 amps.
It depends on how many amps it was designed for. A 12.5kV/600v 10kVA 3 phase transformer can handle ~.5 amps on the primary and ~10A on the secondary. A 600/120V 10kVA 3 phase transformer can handle ~10A on the primary and ~50 on the secondary.
It depends on the rated voltage of its secondary.
To calculate the amperage in the secondary side of a transformer, you can use the formula: Amps = kVA / (Volts x Sqrt(3)). For a 250 kVA transformer with a 220-volt secondary, the amperage will be approximately 660.4 Amps.
The formula you are looking for is I = W/E. Amps = Watts/Volts.
Rephrase your question, as it doesn't make any sense. If the primary side of the transformer is 480 volts 3 phase, this transformer can be supplied from a breaker as big as 180 amps. If 480 volts 3 phase is your secondary then you can supply up to 180 amps to your loads.