No. Current and voltage are directly proportional to one-another and both are related to resistance by Ohm's law:
V = IR
or
Volts = Current * Resistance
So the current will depend upon the voltage and the circuit resistance by rearranging the above equations:
I = V/R
Meaning that the current will decrease as circuit resistance is increased if the voltage remains constant.
Which is true of a series circuit that has two resistors?A.The resistors are on different branches of the circuit.B.Neither resistor has current flowing through it.C.One resistor has no voltage across it.D.Both resistors have current flowing through them.
Resistors do that when there's a current running through them.
In parallel circuit the current through the resistors are different in values depending upon the values of resistors. But the sum of the currents across all the resistors will be equal to the current through the sourcgsvg bdjasuhafyuhda
The total resistance of a set of resistors in parallel is found by adding up the reciprocals of the resistance values, and then taking the reciprocal of the total. By removing a resistor the total current will lower. If you short out the parallel circuit as suggested it will take out the fuse that should be protecting the circuit.AnswerShorting-out a resistor in a parallel circuit, will act to short out the entire circuit, therefore, significantly increasing, not lowering, the current! And, as the previous answer indicates, this short-circuit current will operate any protective devices, such as a fuse.In a parallel circuit current does not lower but it will be increase if shorting-out one resistor in the two resistor parallel circuit, the circuit will become very low resistive and the larger current will flow through the short path.
If the two 5 ohm resistors were in series, then the current would be 1.2 amperes. If they were in parallel, then the current would be 4.8 amperes. Ohm's Law: Current = Voltage divided by Resistance RSeries = Summation1toN RN RPARALLEL = 1 / Summation1toN (1 / RN)
Which is true of a series circuit that has two resistors?A.The resistors are on different branches of the circuit.B.Neither resistor has current flowing through it.C.One resistor has no voltage across it.D.Both resistors have current flowing through them.
It reduces the current. As the current travels through the resitors it has some current that is left in the resistor. And
When resistors are connected in series, the flow of current through them is the same. This means that the current passing through each resistor is equal, as it has to pass through each resistor in the series circuit.
If the resistors are connected in series, the total resistance will be the sum of the resistances of each resistor, and the current flow will be the same thru all of them. if the resistors are connected in parallel, then the current thru each resistor would depend on the resistance of that resistor, the total resistance would be the inverse of the sum of the inverses of the resistance of each resistor. Total current would depend on the voltage and the total resistance
Two resistors wired in series (no mater if they have the same resistor value or not) will always have the same amount of current flowing through them. Therefore, the current flowing through the second resistor will be equal to the current flowing through the first one. The current through every component in a series circuit is the same. The voltage across every component in a parallel circuit is the same.
In a series circuit, if one resistor is replaced with a resistor of lower resistance, the total resistance in the circuit decreases. This leads to an increase in the overall current flowing through the circuit.
Resistors work in an electrical circuit by limiting the flow of electric current. They are designed to resist the flow of electricity, which helps control the amount of current passing through a circuit. This resistance is measured in ohms and can be adjusted by changing the value of the resistor.
The total resistance in a circuit with series resistors is the sum of the individual resistances. When more resistors are added in series, the total resistance increases because the current has to pass through each resistor, making it harder for the current to flow.
Resistors lower voltage in an electrical circuit by impeding the flow of electric current, which causes a drop in voltage across the resistor. This drop in voltage helps regulate the overall voltage in the circuit and control the amount of current flowing through it.
Resistors in a circuit reduce the flow of current by impeding the movement of electrons. This causes a decrease in the overall current flowing through the circuit.
A circuit with five resistors and a battery is constructed by connecting the resistors in series or parallel to create a closed loop for the flow of electric current from the battery through the resistors. The battery provides the energy for the current to flow through the resistors, which resist the flow of current. The arrangement of the resistors and the battery determines the overall resistance and current flow in the circuit.
Resistors do that when there's a current running through them.