answersLogoWhite

0

Radar Technology - The Main Components

All radars are composed of the items listed below. Their operation is organised in a processing chain and hence it is the weakest part that defines the systems capabilities.

The Transmitter

Transmitters are built around semiconductors (often contained in MMICs, millimetre-wave integrated circuits) or powerful vacuum tubes. The latter are rather complicated and sophisticated devices and often carry weird names ending in '-tron', such as Amplitron, Magnetron, Carcinotron, Stabilitron or Klystron.

Owners of a microwave oven are also owners of a magnetron. The fact that microwaves can heat up food was discovered by serendipity, when during the 1940s a radar researcher was astonished to see that a chocolate bar was melting in his trouser pocket while he was performing experiments with an unshielded magnetron1.

The Antenna

The radar antenna serves as the coupling element between the wiring in the radar hardware and free space. Radar antennae can be as small as a thumbtack or as big as a 30-storey building, depending on their operating frequency and beamwidth.

The Receiver

The receiver's task is to pick up the echo that was bounced off a target, filter out unwanted parts outside the radar's bandwidth, amplify the rest and feed it into the signal processor for further analysis. A good receiver is a radar's best defence against noise, its toughest enemy.

A receiver must be very sensitive in order to pick up weak echoes from far away. But usually it is located near the transmitter which can easily 'blind' or even destroy it by 'spillover' leaking into the receiver's input circuitry. In a pulsed radar, damage can be avoided by using a Transmit/Receive-Switch or T/R switch that disconnects the receiver's input from its antenna while the transmitter is operating. In a Continuous Wave Radar, the transmitter operates all the time and receiver protection is only feasible by blocking the frequency that is currently used. Both measures do fulfil their purpose but at the same time they introduce some problems of their own: they produce blind ranges and blind speeds.

Until not long ago, travelling wave tubes (TWT) were the mainstay of receiver construction. Like the -tron devices mentioned above, their inner workings are rather complicated as they are built around some chamber or structure where strong magnetic fields or electron beams interact with low power, high frequency signals. During the 1980s, TWTs were gradually replaced by semiconductors.

The Signal

The signal is what the radar transmits into space. A wide variety of types is available, and perhaps more than all the hardware components, the signal is what determines the quality and capabilities of a radar. The most powerful radar, equipped with an ultra-low sidelobe antenna of incredibly high gain can be blind at the most important range or target speed if the signal was chosen wrong. Some signals are likely to produce 'angels' and 'ghosts' on a screen - things that really make a radar operator's life interesting. More often than not, a single type of signal will not meet all the requirements, and fierce discussion about necessary expenditures ensues between manufacturer and customer.

The Signal Processor

The Signal Processor is the central element of a radar. It has to decide whether an echo really is an echo and whether or not it is worth being reported and displayed. This is not a simple task, as there is much natural noise around, and in the case of military applications there is man-made interference too.

The System

A collection of sophisticated components is a precondition, but not a guarantee, for a good radar. The first step during the design phase is to determine which part of the electromagnetic spectrum is to be used, followed by the selection of the signal that is most appropriate for the purpose in question. All this needs to be composed into a system that is more than the sum of its parts. There are only a few things that a radar cannot do, and the easiest way to find these is to look into the requirement specifications written by the customer.

User Avatar

Wiki User

14y ago

What else can I help you with?

Related Questions

Radar on US battleships in World War 2?

Yes. Radar was used on major warships by all the major powers at some point during WW2. The US and UK had an advantage in that their radar was developed and equipped earlier in the war. The standard large warship radar for the US was CXAM.


What are the major components of food?

Carbohydrates, Fats and Proteins are the major components of food.


What are the 3 major of components?

The 3 major components of fitness are strength,endurance, and flexibility.


What are the 5 major components of an aircraft?

The five major components of airplanes are:WingsFuselagePower plantUndercarriageEmpennage (tail section)


What are the major components of tourism?

4As mainly accomodation, attration,amenities and accessibilities are the major components fo tourism.


What are the major components of Microsoft PowerPoint?

There are 3 -4 major components of Power Point. The components include the menu bar as the options bar.


What are the components of a radar?

The main components of a radar system include a transmitter, which generates electromagnetic signals, a receiver, which captures the signals reflected off targets, an antenna, which radiates the signals and collects the echoes, and a signal processor, which analyzes the received data to detect targets and extract information such as range, bearing, and velocity.


Major components of an ecosystem?

Are Organisms.


What are the major components of buddism?

moderation !


What are the major components of LCD?

screen


What are the major components of comp?

suma


What are the major components of environments?

AIR