Oh, dude, current coils and voltage coils are just like the Beyoncé and Jay-Z of Transformers. The current coil measures the current flowing through a circuit, while the voltage coil measures the voltage across a circuit. They're basically the dynamic duo of electrical measurements, keeping things in check and making sure everything runs smoothly.
Current is not induced into a coil. It's voltage that is induced into a coil. If the coil is connected to a load, or even short circuited, then a current will flow as a result of the induced voltage -but it's the voltage, not the resulting current, that's induced!Voltage is induced into a coil because the the changing magnetic field, due to the change in current (0 to Imax or vice versa) applied to that coil. The process is called 'self induction'.
pressure coil or voltage coil across the supply and the current coil in series.
Same frequency as that of primary coil
If the magnetic field is fluctuating, or the coil of wire and magnetic field are moving with respect to each other, then a current is induced in the coil of wire. If the two are stationary and the magnetic field is stable, then no current is induced in the coil. However, if there is a current in the coil, from another source, then the coil and the field will exhibit a relative force that will tend to move the coil with respect to the field.
If I am not wrong then you have asked about a transformer. And its a current transformer. By theory of voltage transformer we know that Vs/Vp = Ns/Np So for answering your question we need the value of number of turns in primary and secondary coil. But you can use this equation to find your answer if you have other values. By using ohmic law you can convert voltage to current.
These terms apply to the coils inside a wattmeter. 'Pressure coil' is an archaic term for 'voltage coil', which is connected in parallel with the supply, while the 'current coil' is connected in series with the load.
The strength of an electromagnetic is determined completely by the current through its coil, and doesn't depend on the voltage across the coil. The voltage will be (current) x (resistance of the coil).
Current is not induced into a coil. It's voltage that is induced into a coil. If the coil is connected to a load, or even short circuited, then a current will flow as a result of the induced voltage -but it's the voltage, not the resulting current, that's induced!Voltage is induced into a coil because the the changing magnetic field, due to the change in current (0 to Imax or vice versa) applied to that coil. The process is called 'self induction'.
A coil has both resistance and inductance. When you apply a d.c. voltage, the opposition to current is the resistance of the coil. When you apply an a.c. voltage, the opposition to current is impedance -the vector-sum of the coil's resistance and its inductive reactance. Inductive reactance is proportional to the inductance of the coil and the frequency of the supply.
The current flowing through the heating coil will depend on the resistance of the coil and the voltage of the power source. Using Ohm's Law (I = V/R), where I is the current, V is the voltage, and R is the resistance, you can calculate the current. The higher the voltage or lower the resistance, the higher the current.
There is no such thing as an 'induced current'. Voltages are induced, not currents. If a voltage is self-induced into a coil, then that voltage will oppose any change in current. If a voltage is mutually-induced into a separate coil, no current will flow unless that coil is connected to a load.
There is no such thing as an 'induced current'. Voltages are induced, not currents. If a voltage is self-induced into a coil, then that voltage will oppose any change in current. If a voltage is mutually-induced into a separate coil, no current will flow unless that coil is connected to a load.
The induced voltage acts to oppose any change in current that is causing it. So, if the current is increasing, then the induced voltage will act in the opposite direction to the supply voltage; if the current is decreasing, then the induced voltage will act in the same direction as the supply voltage.
When the magnet is withdrawn from the coil, the magnetic field within the coil will decrease, inducing a voltage in the coil. This induced voltage will create a current in the coil that flows in such a way as to try to maintain the original magnetic field.
A: A coil does store energy and this energy will be released after the current is removed is evident by a reversal of voltage across it before it collapse finally with less and less voltage <<>> Using a volt meter to ground, you would see the supply potential coil voltage on the coil end, if the return wire from the coil was open.
A step-up transformer increases the voltage of an electrical current by having more turns in the secondary coil than in the primary coil. This causes the magnetic field to induce a higher voltage in the secondary coil, resulting in an increase in voltage.
pressure coil or voltage coil across the supply and the current coil in series.