An impedance diagram (sometimes called an impedance triangle) results when a series circuit's voltage phasor diagram is divided throughout by its reference phase (current) -this results in resistance (=VR/I), inductive reactance (=VL/I), capacitive reactance (=VC/I) and impedance (=V/I) andillustrates the Pythagorean relationship between the circuit's impedance, reactance, and resistance.
In an electrical wiring diagram, "Im" typically stands for "impedance." It represents the total opposition that a circuit offers to the flow of alternating current (AC), which includes both resistance and reactance. Understanding impedance is crucial for analyzing circuit behavior, particularly in AC systems, as it affects the voltage and current relationship.
To get all the audio voltage from a source to a target without loss you need voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is at least ten times higher then the output impedance.An input impedance is called also a load impedance or an external impedance.An output impedance is called also a source impedance or an internal impedance.
To get all the audio voltage from a source to a target without loss you need voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is at least ten times higher then the output impedance.An input impedance is called also a load impedance or an external impedance.An output impedance is called also a source impedance or an internal impedance.
To get all the voltage from a source to a target without loss you need voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is more than ten times higher then the output impedance.An input impedance is called also a load impedance or an external impedance.An output impedance is called also a source impedance or an internal impedance.
To get all the voltage from a source to a target without loss you need voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is more than ten times higher then the output impedance.An input impedance is called also a load impedance or an external impedance.An output impedance is called also a source impedance or an internal impedance.
Most definitely not, as resistance, reactance, and impedance are not themselves phasor quantities. However, it is derived from a phasor diagram (by dividing a voltage phasor diagram by the reference phasor, current).
It means the "Reactance". It's the imaginary part of impedance. Z=R+jX
In an electrical wiring diagram, "Im" typically stands for "impedance." It represents the total opposition that a circuit offers to the flow of alternating current (AC), which includes both resistance and reactance. Understanding impedance is crucial for analyzing circuit behavior, particularly in AC systems, as it affects the voltage and current relationship.
in modern trend, synchronous impedance of alternator should be high. If impedance are more than voltage drop across its arm. Wdg. Is more .according to the phasor diagram of alternator if IaXs componant is more than magnitude of induced emf will also be increased.
That depends on the output impedance. In electronic we use voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is more than ten times higher then the output impedance. An input impedance is called also a load impedance or an external impedance. An output impedance is called also a source impedance or an internal impedance.
The characteristic impedance or surge impedance belongs to uniform transmission lines.In electronic gears we use voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is more than ten times higher then the output impedance.An input impedance is called also a load impedance or an external impedance.An output impedance is called also a source impedance or an internal impedance.
In electronic gears we use voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is more than ten times higher then the output impedance.An input impedance is called also a load impedance or an external impedance.An output impedance is called also a source impedance or an internal impedance.
load impedance
The resistance and reactance of an a.c. load are determined from the phasor diagram for that load. A phasor diagram is very similar to vector diagram, and represents the voltage drop across the resistive component of the load as being in phase with the load current, and the voltage drop across the reactive component as lagging the load current by 90 degrees. The vector sum of these two voltage drops will equal the value and phase-relationship of the supply voltage.If we now divide each of these three voltages by the supply current, we will converted the phasor diagram into what is called an 'impedance triangle', in which the resistance is represented horizontally, the reactance is represented vertically, and the impedance is represented by the resulting hypotenuse. So, to find the hypotenuse (i.e. the impedance) we must use Pythagoras's Theorem to vectorially-add the horizontal (resistance) and vertical (reactance) components.
To get all the voltage from a source to a target without loss you need voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is more than ten times higher then the output impedance.An input impedance is called also a load impedance or an external impedance.An output impedance is called also a source impedance or an internal impedance.
To get all the audio voltage from a source to a target without loss you need voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is at least ten times higher then the output impedance.An input impedance is called also a load impedance or an external impedance.An output impedance is called also a source impedance or an internal impedance.
To get all the voltage from a source to a target without loss you need voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is more than ten times higher then the output impedance.An input impedance is called also a load impedance or an external impedance.An output impedance is called also a source impedance or an internal impedance.