A: The VA rating is there 6v/a the power fuse to blow is 6watts. 050a fuse
First find the ratio of the transformer. 6600/220 volts. Second find the secondary current, I = W/E, 99000/220. Third divide the secondary current by the transformer ratio. The answer will be the primary current. To check your answer (W (or VA) = V x A) multiply the primary current times the primary voltage and the secondary current times the secondary voltage and they should both equal the transformer's kVA.
The secondary current of a transformer is determined by the load and the secondary voltage applied to that load, and this, in turn, will determine the primary current by the inverse of the turns ratio. However, if you are asking about a transformer's rated secondary and primary currents, then you need to divide the transformer's apparent power rating (expressed in volt amperes) by the rated secondary and primary voltages respectively.
First of all, transformers are rated in volt amperes, not watts. Secondly, in order to determine a transformer's turns-ration, you need to know its primary and secondary voltage ratings.
It depends what you mean by an '11-kV transformer'; do you mean a primary transformer (33/11-kV transformer) or a distribution transformer (11-kV/400-230-V transformer). Differential protection IS offered on primary transformers.
The difference between the two transformers is the coil ratios between the primary and secondary windings. A transformer that increases voltage from primary to secondary has more secondary winding turns than primary winding turns and is called a step-up transformer. Conversely, a transformer with fewer secondary windings does just the opposite and is called a step-down transformer.
The primary current on a loaded transformer depends on the secondary current, which is determined by the load. So, if you know the secondary load current, then you can use the turns ratio of the transformer to determine the primary current:Ip/Is = Ns/Np
The ratio of the primary voltage to the secondary voltage is proportional to the ratio of windings. So if the primary voltage is 120 volts and the secondary is 240 volts there are twice as many turns in the secondary.AnswerAs the previous answer says, you can work out the turns ratio of a transformer, but knowing the primary and secondary voltages will not help you determine how many turns are on each winding.
Secondary voltage / primary voltage
Without knowing the type of transformer (audio/power, step-up, step-down, etc.) it's difficult to offer any advice.
First find the ratio of the transformer. 6600/220 volts. Second find the secondary current, I = W/E, 99000/220. Third divide the secondary current by the transformer ratio. The answer will be the primary current. To check your answer (W (or VA) = V x A) multiply the primary current times the primary voltage and the secondary current times the secondary voltage and they should both equal the transformer's kVA.
The secondary current of a transformer is determined by the load and the secondary voltage applied to that load, and this, in turn, will determine the primary current by the inverse of the turns ratio. However, if you are asking about a transformer's rated secondary and primary currents, then you need to divide the transformer's apparent power rating (expressed in volt amperes) by the rated secondary and primary voltages respectively.
This isn't the case. You can have aluminium or copper on primary or secondary side of a transformer.
The incoming voltage from the source to the transformer is called primary voltage.
The primary winding of a transformer is connected to the supply, while the secondary winding is connected to the load.
First of all, transformers are rated in volt amperes, not watts. Secondly, in order to determine a transformer's turns-ration, you need to know its primary and secondary voltage ratings.
It depends on the voltage on line side. KVA is simply thousand volt-amps, so you need to know voltage in order to calculate amperes.Another AnswerThe rated primary current is the rated apparent power of the transformer, divided by the rated primary current. However, the actual primary current is determined by the actualsecondary load current in proportion to the reciprocal of the turns ratio.
You will have a 1:1 ratio isolation transformer.