real power (as opposed to imaginary power, which is not dissipated)
When electrons move through a resistor, they encounter resistance, which causes them to collide with the atoms in the resistor material. These collisions result in the transfer of kinetic energy from the electrons to the atoms, increasing the vibrational energy of the atoms. This energy transfer manifests as thermal energy or heat, leading to an increase in the temperature of the resistor. Thus, the energy lost by the electrons is converted into heat energy due to resistive heating, also known as Joule heating.
Power dissipation of a resistor or any load is the amount of power (in watts) that is converted to heat, light, or other form of energy. In a resistor, power dissipation is defined by Ohm's law P = I^2 * R Power dissipated equals current through the resistor squared times the resistance in ohms. Since the power is converted to heat, a resistor has a maximum dissipation rating set by the manufacturer, above which the resistor will be damaged.
If the resistor is conducting electrical current, then the power it dissipates (heat energy per second) is(current through it)2 times (22,000)or(voltage across it)2 divided by (22,000).If the resistor is connected in an unpowered circuit, or stored in a drawer, then it dissipates zero heat.
Resistors dissipate heat energy with power P=I2R. Since power is defined as energy gained or lost per unit time, we can solve for the energy lost using E=Pt, where E is energy (joules), P is power, and t is time (seconds).Finally, substituting the definition of power into the equation you get:E=I2RtAnswerWith difficulty. The original answer, unfortunately, tells us the work done on the resistor and not the heat transfer from the resistor, which is what the questioner is asking.The work done on the resistor is the product of the square of the current and the value of its resistance. This will increase the internal energy of the resistor and increase its temperature above that of its surroundings, and heat, by definition, is the energy transferred from the higher temperature resistor to its cooler surroundings.So there are simply too many unknown variables to take into account: the mass of the resistor, the specific heat capacity of the material from which it's made, the temperature difference between the resistor and its surroundings...
I = E / RIf the voltage across the resistor is 90 volts, and the resistance of the resistoris 9 ohms, then the current through the resistor is90/9 = 10 Amperes.Don't try this at home!The power dissipated by the resistor is E2/R = (90)2/9 = 900 watts. That's comparable to the power (heat) dissipated by a small toaster. A common composition resistor will get hot and possibly explode if it's asked to dissipate that kind of power.
The power generated in a resistor is converted into heat. and that can be power which is converted into heat is the product of the voltage across the resistor and, current passing through the resistor. or the product of square of the current and the resistance offered by the resistor.
When current passes through a resistor, electrical energy is converted into heat energy, which causes the resistor to heat up. This process is known as Joule heating.
Joule's law can be demonstrated experimentally by using a setup where electrical energy is converted into heat energy as current flows through a resistor. By measuring the voltage across the resistor and the current passing through it, the power dissipated as heat (P = I^2 * R) can be calculated. The increase in temperature of the resistor due to the heat generated confirms Joule's law.
A resistor gets hot when electricity passes through it because the resistance in the resistor causes some of the electrical energy to be converted into heat energy. This heat energy is dissipated as the resistor resists the flow of electricity, leading to an increase in temperature.
When an electrical charge flows through a resistor, some of the electrical energy is converted into heat due to the resistance of the material. This heat causes the resistor to get hot, and the temperature increase is proportional to the amount of current flowing through it and the resistance of the resistor. If too much heat is generated, the resistor may be damaged or experience a change in resistance.
A resistor slows the flow of electricity, and converts the electrical energy into heat. You don't WANT heat - you want LIGHT, so we generally do not put resistors in lighting circuits. If there is a resistor in the circuit, it will cause some of the energy that would normally be converted to light to be converted into heat instead, so the light bulb will glow less brightly. A variable resistor in such a circuit is sometimes called a "dimmer".
When electrons move through a resistor, they encounter resistance, which causes them to collide with the atoms in the resistor material. These collisions result in the transfer of kinetic energy from the electrons to the atoms, increasing the vibrational energy of the atoms. This energy transfer manifests as thermal energy or heat, leading to an increase in the temperature of the resistor. Thus, the energy lost by the electrons is converted into heat energy due to resistive heating, also known as Joule heating.
Power dissipation of a resistor or any load is the amount of power (in watts) that is converted to heat, light, or other form of energy. In a resistor, power dissipation is defined by Ohm's law P = I^2 * R Power dissipated equals current through the resistor squared times the resistance in ohms. Since the power is converted to heat, a resistor has a maximum dissipation rating set by the manufacturer, above which the resistor will be damaged.
A braking resistor is used in motion systems where a motor in controlled by a drive. Typically, these are high-speed servomotors controlled by a servodrive. When accelerating, electrical energy is converted to a mechanical force to move a mass. When decelerating, that kinetic energy is converted (via the motor) back into electrical energy, and must go somewhere. To brake quick enough, the energy must be dumped into a power resistor, to be dissipated as heat. Read more at the link provided below.
You can keep a resistor at a constant temperature by using a heat sink to dissipate excess heat generated by the resistor. This helps maintain a stable operating temperature and prevent overheating. Additionally, ensuring proper ventilation and using a resistor with a high power rating can also help regulate its temperature.
If the resistor is conducting electrical current, then the power it dissipates (heat energy per second) is(current through it)2 times (22,000)or(voltage across it)2 divided by (22,000).If the resistor is connected in an unpowered circuit, or stored in a drawer, then it dissipates zero heat.
A device that uses a resistor to transform electrical energy into light and heat is an incandescent light bulb. The resistor, also known as a filament, has high resistance, which causes it to heat up and emit light as a result of the electrical current passing through it.