Begin with the most basic. Ohms law. I=E/X. Don't know I or E? Then the formula is, XL= 2 x pi x f x L. That is Inductive reactance equals 2 x 3.1416 X frequency in hertz x inductance in henrys.
If frequency is in MHZ, HF. VHF. UHF., radio frequencies, reactance in inductors/coils is small and requires no conversion if the values are expressed in microhenrys and megahertz.
If the question is not just a simple test question and you are dealing with a real world application, one must remember that current runs 90 degrees behind voltage, which is the opposite of the capacitor current-voltage relationship.
The reactance (X_L) of an inductor is calculated using the formula (X_L = 2\pi f L), where (f) is the frequency in hertz and (L) is the inductance in henries. For a 3-H inductor at a frequency of 100 Hz, the reactance is (X_L = 2\pi (100)(3) \approx 1884.96 , \Omega). Thus, the reactance of the 3-H inductor at 100 Hz is approximately 1885 ohms.
'Reactance' is the name given to the opposition to the flow of alternating current, due to the inductance of a load and the frequency of the supply voltage. It is measured in ohms.
Resistance is constant no matter the frequency applied. Reactance varies depending on the frequency of the power applied to it.
Yes. Inductive and capacitive reactance is measured in ohms, and it is entirely possible for reactance to be greater than 1,000, or even 1,000,000, ohms. It all depends on frequency.
Inductive reactance does NOT have it own sign or symbol. Rather, it uses Ohms as a quantifier. But Capacitive reactance ALSO uses Ohms as a quantifier. Fortunately, 1 Ohm of Inductive reactance is cancelled by 1 Ohm of Capacitive reactance at the same frequency of measurement.
The reactance (X_L) of an inductor is calculated using the formula (X_L = 2\pi f L), where (f) is the frequency in hertz and (L) is the inductance in henries. For a 3-H inductor at a frequency of 100 Hz, the reactance is (X_L = 2\pi (100)(3) \approx 1884.96 , \Omega). Thus, the reactance of the 3-H inductor at 100 Hz is approximately 1885 ohms.
Ohms, resistance in an inductor increases as the frequency of the AC signal increases, this "artificial resistance" is called impedence, and it is measured in ohms
Opposition to the flow of AC current produced by an inductor. Measured in Ohms and varies in direct proportion to frequency.
Ohms Law says that Voltage = Current * Ohms, so the twothings that can affect the voltage in a circuit are Current and Ohms. If have a non resistive impedance, i.e. a capacitor or inductor forming a reactance, then frequency can also affect the voltage but, mathematicaly, reactance is a frequency domain form of impedance, so my answer stands - Current and Ohms.
A changing current through an inductor induces a voltage into the inductor, the direction of which always opposes the change in that current.So, in a d.c. circuit, an inductor will oppose (not prevent) any rise or fall in current, although the magnitude of that current will be determined by the resistance of that inductor, not by its inductance.In an a.c. circuit, because the current is continuously changing both in magnitude and in direction, it acts to continuously oppose the current due to its inductive reactance. Inductive reactance is proportional to the inductance of the inductor and the frequency of the supply. The vector sum of the inductive reactance of the inductor and the resistance of the inductor, is termed the impedance of the inductor. Inductive reactance, resistance, and impedance are each measured in ohms.
The reactance of an inductor is calculated as Xl = 2πfL, where Xl is the inductive reactance, f is the frequency, and L is the inductance. Substituting the given values of 100 microhenries for inductance and 400 Hz for frequency into the formula gives Xl = 2 * π * 400 * 100 * 10^-6 which equals approximately 251.3 ohms.
'Reactance' is the name given to the opposition to the flow of alternating current, due to the inductance of a load and the frequency of the supply voltage. It is measured in ohms.
Resistance is constant no matter the frequency applied. Reactance varies depending on the frequency of the power applied to it.
While it is true that an inductor opposes the flow of an alternating current, it does not necessarily 'block it'. The quantity that opposes the flow of an AC current is the inductor's inductive reactance, expressed in ohms. Inductive reactance is proportional to the frequency of the supply voltage and, at 50 or 60 Hz, the reactance of a transformer's winding is relatively low (although very much higher than its resistance) and, while this acts to limit the amount of current flow, it certainly doesn't act to block that flow.
Yes. Inductive and capacitive reactance is measured in ohms, and it is entirely possible for reactance to be greater than 1,000, or even 1,000,000, ohms. It all depends on frequency.
The capacitive reactance of a 1 µF capacitor at a frequency of 60 Hz is about 2700 ohms.
Inductive reactance does NOT have it own sign or symbol. Rather, it uses Ohms as a quantifier. But Capacitive reactance ALSO uses Ohms as a quantifier. Fortunately, 1 Ohm of Inductive reactance is cancelled by 1 Ohm of Capacitive reactance at the same frequency of measurement.