The two resistors in series have an effective resistance given by the formula
Reff = R1 + R2
therefore
Reff = 30 + 30 = 60 ohms
V = IReff
I = 40/60 = 2/3 (or 0.67) A
If 3 identical 45-ohm resistors are connected in parallel, the net effective resistance of the bunch ...and the load seen by the battery ... is 15 ohms. The current supplied by the battery is60/15 = 4 Amperes.(This assumes that the battery is capable of supplying 4 amps at 60 volts, or 240 watts !)
1.5 ohms. Two 3 ohm resistors in parallel.
4 resistors were connected in parallel it yields 5A of current from 220V supply.
The equivalent resistance of multiple resistors connected in series is the sum of theindividual resistances.(10 + 60 + 50) = 120 ohms for this particular trio of resistors in series.It makes no difference what battery they may be connected to, or if they're connected toany power supply at all.
You need to calculate the equivalent resistance. For instance, if the three resistors are connected in series, simply add all the resistance values up. Then, you calculate the current (in amperes) using Ohm's Law (V=IR); that is, you need to divide the voltage by the resistance.
A circuit with five resistors and a battery is constructed by connecting the resistors in series or parallel to create a closed loop for the flow of electric current from the battery through the resistors. The battery provides the energy for the current to flow through the resistors, which resist the flow of current. The arrangement of the resistors and the battery determines the overall resistance and current flow in the circuit.
Resistors are in series if they are connected end-to-end, creating one path for current to flow. Resistors are in parallel if they are connected side by side, providing multiple paths for current to flow. You can determine if resistors are in series or parallel by examining how they are connected in a circuit.
If 3 identical 45-ohm resistors are connected in parallel, the net effective resistance of the bunch ...and the load seen by the battery ... is 15 ohms. The current supplied by the battery is60/15 = 4 Amperes.(This assumes that the battery is capable of supplying 4 amps at 60 volts, or 240 watts !)
2 amps
Resistors are wired in series when they are connected in a line. The current flows through the resistors one after the other.
The resistors connected in single path are called series resistances or resistances in series.The current across both the resistors is same while the potential differences are different.
Resistors connected in parallel have the same voltage across them, while resistors connected in series have the same current passing through them. In a parallel configuration, the total resistance decreases as more resistors are added, while in a series configuration, the total resistance increases.
1.5 ohms. Two 3 ohm resistors in parallel.
When resistors are connected in series, the flow of current through them is the same. This means that the current passing through each resistor is equal, as it has to pass through each resistor in the series circuit.
"Amp" is not a specification associated with resistors. It could be anything.
The current depends on what is connected to the battery's terminals. If nothing is connected to it, then there is no current, and the battery lasts quite a while. In general, the current is 1.5/resistance of the external circuit connected to the battery until that number gets too big, and then the voltage of the battery sags, because it can't deliver that much current.
if resistors connected in series the resistance will increase.Then it limit the flow of current through it. voltage may be increased. A: by connecting any resistors in series it will limit the current flow it will effect the current but never the voltage applied