Yes
The diffusion capacitance in a diode is associated with the storage of minority carriers, which occurs primarily under forward bias. In reverse bias, the depletion region widens, and the majority carriers are pulled away from the junction, minimizing the injection and storage of minority carriers. As a result, the diffusion capacitance becomes negligible because there is insufficient minority carrier recombination and storage in this condition. Thus, the behavior of the diode under reverse bias is dominated by junction capacitance rather than diffusion capacitance.
Junction capacitance occurs at the depletion region of a p-n junction diode and is associated with the charge storage due to the electric field created by the built-in potential; it varies with the applied voltage. In contrast, diffusion capacitance is related to the charge carriers' movement across the junction when the diode is forward-biased, and it reflects the transient response of the charge carriers as they diffuse into the depletion region. Essentially, junction capacitance is linked to the static electric field, while diffusion capacitance is dynamic, arising from the flow of charge carriers.
Diffusion capacitance is the capacitance due to transport of charge carriers between two terminals of a device. - Amog This diffusion capacitance is due to depletion capacitance which is a function of forward bias applied to emitter junction of a transistor and due to diffusion capacitance which a function of transconductance of the transistor. Its value is 100 pF. Tirupanyam B.V
Bulk resistance of diode depends on how it is biased. The bulk resistance of a diode is the approximate resistance of the diode when it is forward biased.
A nonconducting diode is biased in the reversed direction (reverse polarization).
The diffusion capacitance in a diode is associated with the storage of minority carriers, which occurs primarily under forward bias. In reverse bias, the depletion region widens, and the majority carriers are pulled away from the junction, minimizing the injection and storage of minority carriers. As a result, the diffusion capacitance becomes negligible because there is insufficient minority carrier recombination and storage in this condition. Thus, the behavior of the diode under reverse bias is dominated by junction capacitance rather than diffusion capacitance.
Junction capacitance occurs at the depletion region of a p-n junction diode and is associated with the charge storage due to the electric field created by the built-in potential; it varies with the applied voltage. In contrast, diffusion capacitance is related to the charge carriers' movement across the junction when the diode is forward-biased, and it reflects the transient response of the charge carriers as they diffuse into the depletion region. Essentially, junction capacitance is linked to the static electric field, while diffusion capacitance is dynamic, arising from the flow of charge carriers.
when a diode is forward biased it conducts current
A capacitor is a device that stores charge. Therefore any device that stores charges( static or dynamic) can be said to have capacitance. When a PN diode is forward biased, a current flows due to the majority charge carriers. At a particular instant there will be charges in motion. This is dynamic charge. The capacitance due to storage of dynamic charge is called the diffusion capacitance. We know that C = Q * V. That is capacitance is directly proportional to charge stored. Since the diode current increases exponentially with the voltage applied across it, the dynamic charge also increases exponentially . Hence the diffusion capacitance increases exponentially with the increasing diode voltage.
Transition capacitance is the capacitance that is accumulated between two terminals as an electrical charge is carried between them. In a diode, this is the diffusion from anode to cathode of a diode in forward bias mode.
Diffusion capacitance is the capacitance due to transport of charge carriers between two terminals of a device. - Amog This diffusion capacitance is due to depletion capacitance which is a function of forward bias applied to emitter junction of a transistor and due to diffusion capacitance which a function of transconductance of the transistor. Its value is 100 pF. Tirupanyam B.V
Bulk resistance of diode depends on how it is biased. The bulk resistance of a diode is the approximate resistance of the diode when it is forward biased.
acts like a normal diode in forward biased condition
Forward biased is the configuratiuon that a diode conducts.
A nonconducting diode is biased in the reversed direction (reverse polarization).
A diode is a semiconductor material which has p region and n region. In order to "turn on" and conduct current in the forward direction, a diode requires a certain amount of positive voltage to be applied across it. An ideal diode conducts only when the diode is forward biased, and then the voltage drop across the diode (Vd) is zero. When the ideal diode is reverse biased, no current flows. The two conditions to operate a diode are: (a) Current flow is permitted; the diode is forward biased. (b) Current flow is prohibited; the diode is reversed biased. When the polarity of the battery is such that current is allowed to flow through the diode, the diode is said to be forward-biased.
0.7 The voltage across a silicon diode when it is forward biased should be greater than or equal (>=) 0.7volts.