Personally describing VHDL code for multiplexer can be quite difficult without prior knowledge. It takes many VHDLs to be a multiplexer.
In the context of digital electronics, "tb" typically refers to the timing behavior or timing diagram for a decoder, specifically a 4-to-16 line decoder. A 4-to-16 decoder takes 4 input binary signals and decodes them into one of 16 output lines, with only one output being active (logic high) at any time corresponding to the binary value of the inputs. The timing diagram would illustrate the relationship between the input signals and the active output over time, showing the propagation delay as the input changes and the output stabilizes.
4
we'll get 4 input mux cuz 2^4=16.... therefore the first 4 input mux has 16 o/p.. hence four-4 i/p mux are required to fill all 16 leads.
Write a program in c++ that take input in a integer matrix of size 4*4 and find out if the entered matrix is diagonal or not.
Personally describing VHDL code for multiplexer can be quite difficult without prior knowledge. It takes many VHDLs to be a multiplexer.
There are 4 main differences between C programming and VHDL programming. C is a mid-level language, while VHDL is a hardware description language. C can handle one type of instruction, while VHDL can handle two. C does not require as much resource usage as VHDL. C can be written only with logical thinking, but a VHDL programmer must understand hardware circuits.
8:256 decoder circuit can be implemented by using 4:16 decoder circuit
A 4-input decoder can produce (2^n) outputs, where (n) is the number of inputs. For a 4-input decoder, (n = 4), so the number of possible outputs is (2^4 = 16). Therefore, a 4-input decoder can generate 16 distinct output lines based on the 4 input combinations.
To create a 6 to 64 decoder using four 4 to 16 decoders and one 2 to 4 decoder, first, separate the 6 input bits into two groups: the upper 2 bits (let's call them A5 and A4) and the lower 4 bits (A3 to A0). Use the 2 to 4 decoder to decode the upper 2 bits, which will select one of the four 4 to 16 decoders. Then, connect the lower 4 bits to all four 4 to 16 decoders. The selected 4 to 16 decoder will activate one of its 16 outputs based on the lower 4 bits, resulting in a total of 64 outputs from the combination of the decoders.
4
Oh, dude, making a 6-to-64 decoder with 4-to-16 decoders is like building a tower of Legos with some missing pieces. You just gotta cascade the 4-to-16 decoders in a way that each output of the 6-to-64 decoder corresponds to a unique combination of inputs from the 4-to-16 decoders. It's kinda like solving a puzzle, but with electronic components.
Oh I had to change the settings on the decoder to send the signal as 4:3 instead of 16:9
Click on the decoder 4 times the type in 130928:):):):):) I hope this helped:):):)
It turned out to be very easy))) But I was thinking for a while to solve the problem... )))Ok. Lets say we have inputs S3..S0. Let S3 and S2 go to inputs of each of FOUR of decoders; and S1 with S0 go to the inputs of the FIFTH decoder. The four outputs of the FIFTH decoder go to enable lines of the four decoders. Voila! It might be confusing, but just draw the whole thing and you'll see. Now you just need to enable the fifth decoder... HA-HA!
To create a 4-to-16 decoder using 2-to-4 decoders, you can use four 2-to-4 decoders in a hierarchical structure. First, take the two most significant bits (MSBs) of the 4-bit input to select one of the four 2-to-4 decoders. Each of these decoders will then decode the two least significant bits (LSBs) of the input, generating a unique output corresponding to the 4-bit input combination. This setup allows you to produce 16 unique outputs based on the 4-bit input.
To create a decoder with symbols, you need to assign a unique symbol to each input combination of the decoder. For example, in a 2-to-4 decoder, you could use symbols like A, B, C, and D to represent the output signals corresponding to the input combinations. By using symbols that are easy to understand and differentiate, you can effectively represent the decoder's logic and functionality.