To design a decade synchronous counter, you start by using flip-flops, typically JK or D flip-flops, to create a 4-bit binary counter that can count from 0 to 9 (ten states). The counter increments on each clock pulse, and you implement combinational logic to reset the counter when it reaches the state representing 10 (1010 in binary). This reset logic can be achieved using AND gates to detect the 10 state and feed back to the reset inputs of the flip-flops. Finally, ensure that the clock input is connected to all flip-flops to maintain synchronization.
A synchronous counter is not referred to as a ripple counter. They are two different things. The ripple counter uses the output of each stage to trigger the input of the next stage, resulting in propagation delay between stages. The synchronous counter, on the other hand clocks all stages on the same clock edge, making them all change at relatively the same time.
Basically it is a Synchronous Counter. You can google for further information.
main focus on inductance calculation
it counts the number of pages on the site
A ripple counter is a counter in which state transitions of one or more flip flops are triggered by the outputs of other flip flops in the circuit. If all flip flops in the counter are triggered by a common clock pulse, then the counter is called a "synchronous counter". a ripple counter is a counter that will ripple through the information sequentialy. .
http://ftp.csci.csusb.edu/schubert/tutorials/csci310/f03/dw4bit.pdf
a counter is a counter which counts the data and the decade counter is the counts the decade ones
Synchronous
A synchronous counter is not referred to as a ripple counter. They are two different things. The ripple counter uses the output of each stage to trigger the input of the next stage, resulting in propagation delay between stages. The synchronous counter, on the other hand clocks all stages on the same clock edge, making them all change at relatively the same time.
used in rotary shaft encoder
The use of a decade counter is to store or keep track of something happening or an event . Usually, counter circuits are digital in nature.
1. Easier to design 2. No propagation delay Actually the second one is the most important reason. In designing circuits that work at high clock rates, ripples will result in errors so synchronization is very very important.
Basically it is a Synchronous Counter. You can google for further information.
cmos
Three decade counter are required to count 999
main focus on inductance calculation
4