In a separately excited DC generator, the induced voltage is directly related to the magnetic field strength produced by the field winding, which is influenced by the exciting current. If the exciting current is reduced, the magnetic field strength decreases, leading to a reduction in the induced voltage. Consequently, the output voltage of the generator will decrease as the field strength diminishes, assuming all other factors remain constant.
Either or both can be separately excited. To generate voltage you need a big magnet( the field). Most generators use an electro-magnet. Now the electro-magnet needs a source of power (electricity). We could use the generators own output to excite the field (magnet), this is called self excitation. The problem with self excitation is that we have to wait for the generator to turn and start generating, also to start generating (Building up) there must be some left over magnetism from the last time it was run (called residual magnetism) or not even a little voltage will be generated to start the field current flowing. To solve these problems we could use separately excited. This means we must have a separate source of power to excite the field to produce the magnetism. Sometimes a battery or gasoline driven generator is used to excite the field of a very large generator to get it generating and then we can use some of the generated output to either recharge the battery or switch over to from the battery. In any case we have adjustable control of the generator all the time. This is why most generators are designed to be separately excited. And that is why you car has a voltage regulator. It wakes up the alternator when the engine is started by separately exciting it (the field) with the battery and then regulates the output voltage of the alternator as the engine changes speed with the driver's commands from the gas pedal.
An a.c. generator produces alternating current, whereas a d.c. generator produces direct current.
the cosine of the angle between voltage and current of generator is called power factor (pf) of generator.
pogi current flow in the armature conductor
An electrosurgical generator is a piece of medical equipment. The generator takes mains AC current and turns it into radio frequency (>100Khz) AC current. This current can then be used to cause a tissue effect in a patient (i.e. cutting, coagulation, fulguration).
A shunt generator is a method of generating electricity in which field winding and armature winding are connected in parallel, and in which the armature supplies both the load current and the field current.A direct current (DC) generator, not using a permanent magnet, requires a DC field current. The field may be separately excited by a source of DC, or may be connected to the armature of the generator so that the generator also provides the energy required for the field current.
Either or both can be separately excited. To generate voltage you need a big magnet( the field). Most generators use an electro-magnet. Now the electro-magnet needs a source of power (electricity). We could use the generators own output to excite the field (magnet), this is called self excitation. The problem with self excitation is that we have to wait for the generator to turn and start generating, also to start generating (Building up) there must be some left over magnetism from the last time it was run (called residual magnetism) or not even a little voltage will be generated to start the field current flowing. To solve these problems we could use separately excited. This means we must have a separate source of power to excite the field to produce the magnetism. Sometimes a battery or gasoline driven generator is used to excite the field of a very large generator to get it generating and then we can use some of the generated output to either recharge the battery or switch over to from the battery. In any case we have adjustable control of the generator all the time. This is why most generators are designed to be separately excited. And that is why you car has a voltage regulator. It wakes up the alternator when the engine is started by separately exciting it (the field) with the battery and then regulates the output voltage of the alternator as the engine changes speed with the driver's commands from the gas pedal.
To draw current from a generator, you need to connect a load to it.
It is technically an alternating current generator.It is technically an alternating current generator.
Differential compounded generators are used in Ward Lenard motor generator loops. The shunt fields on these generators are separately excited and when the shunt field polarity is reversed by the controller the series field helps drive the generator voltage to zero thus aiding in the reversal of current.
An a.c. generator produces alternating current, whereas a d.c. generator produces direct current.
The strength of two fields in a generator is determined by the amount of current flowing through the coils of wire creating the fields and the number of turns in the coils. Additionally, the strength of the magnetic field can be affected by the type of materials used in the construction of the generator.
A generator produces an alternating current, still it gives d.c. output because we use slip-rings at the terminals of actual output of generator.
A Generator is electrical machine which produces electrical current and voltage..
Induce current in the generator windings.
Differential compounded generators are used in Ward Lenard motor generator loops. The shunt fields on these generators are separately excited and when the shunt field polarity is reversed by the controller the series field helps drive the generator voltage to zero thus aiding in the reversal of current.
A generator moves a coil of wire through a magnetic field and that induces a current in the coil .