answersLogoWhite

0

What else can I help you with?

Related Questions

What is the relationship between the electric potential in a capacitor and the amount of charge stored on its plates?

The electric potential in a capacitor is directly proportional to the amount of charge stored on its plates. This means that as the amount of charge stored on the plates increases, the electric potential also increases.


What is the formula for calculating the charge stored in a capacitor?

The formula for calculating the charge stored in a capacitor is Q CV, where Q represents the charge stored in the capacitor, C is the capacitance of the capacitor, and V is the voltage across the capacitor.


What is the effect of a dielectric on the energy stored in a capacitor?

A dielectric increases the energy stored in a capacitor by reducing the electric field strength between the plates, allowing for more charge to be stored at a lower voltage.


How is power stored in a capacitor?

Power is stored in a capacitor through the accumulation of electric charge on its plates. When a voltage is applied across the capacitor, electrons are forced onto one plate and pulled off the other, creating an electric field between the plates that stores energy.


What electrical component can hold a charge?

A capacitor is an electrical component that can hold an electrical charge. It stores energy in an electric field when connected to a power source and can release this stored energy when needed.


What is the potential difference between two plates of a capacitor and how does it affect the overall behavior of the capacitor?

The potential difference between two plates of a capacitor is the voltage across the capacitor. This voltage affects the amount of electric charge stored in the capacitor and determines the energy stored in the capacitor. A higher potential difference results in a greater charge and energy stored in the capacitor. This affects the overall behavior of the capacitor by influencing its capacitance, charging and discharging rates, and the amount of energy it can store and release.


What is the formula for calculating the potential difference across a capacitor in an electric circuit?

The formula for calculating the potential difference across a capacitor in an electric circuit is V Q/C, where V represents the potential difference, Q is the charge stored on the capacitor, and C is the capacitance of the capacitor.


What is the maximum charge that can be stored on the capacitor?

The maximum charge that can be stored on a capacitor is determined by the capacitance of the capacitor and the voltage applied to it. The formula to calculate the maximum charge is Q CV, where Q is the charge, C is the capacitance, and V is the voltage.


What is the relationship between the electric field in a capacitor and the amount of stored energy in the system?

The electric field in a capacitor is directly proportional to the amount of stored energy in the system. This means that as the electric field increases, the amount of stored energy in the capacitor also increases.


What is a capacitance?

capacitanceis the ability of a body to store charge in anelectric field. Capacitance is also a measure of the amount of electric potential energy stored (or separated) for a given electric potential.AnswerA capacitor is a device that will store electrical energy. This energy is stored in its electric field. This is achieved by separating the charge on its plates -contrary to popular belief, it does not store that charge, as the net charge remains the same after charging as it was before charging.


What current exists in a capacitor when it is fully charged in an RC circuit?

When a capacitor is fully charged in an RC circuit, it holds a stored electrical charge. This charge creates an electric field between the capacitor plates, with no current flowing through the circuit at that moment.


What is the relationship between the potential difference across a capacitor and the amount of charge stored on it?

The potential difference across a capacitor is directly proportional to the amount of charge stored on it. This means that as the potential difference increases, the amount of charge stored on the capacitor also increases.