name as many scalar fields and vector fields as u can?
Both, E=Es + Ev = cB therefore, B= Es/c + Ev/c = Bs + Bv. The electric and magnetic fields are quaternion fields consisting of a scalar field and a vector field. Contemporary Physics has not realized this yet. Correct Relativity Theory is a manifestation of quaternion fields, consisting of a scalar field and three vector fields. This shows up in the Energy Momentum four vector, E= Es +cmV. Actually the Lorentz Force is both scalar and vector: F=qvB = - qv.B + qvxB it makes no sense consider only qvxB and to ignore qv.B.
It depends upon the condition.But basically, to be a vector, the physical quantities needs to follow vector algebra.but current dos not follow it so it is scalar quantity.
Vector quantity is a quantity characterized by magnitude and direction.Whereas,Scalar quantity is a quantity that does not depend on direction.
Yes.It is denoted by sC and represents a vector in the same direction as C but s times as big.
For a physical quantity to be termed a vector quantity, having magnitude and direction is not enough. The quantity should obey the laws of vector addition too. Like the triangle law or the parallelogram law. As we know, if two currents meet at a junction, the total current of the resultant current will be the algebraic sum of the two current and not the vector sum.Sometimes, treating a current like a vector makes sense, like when the current though a conductor induces a magnetic field.
The significance of the divergence of a scalar times a vector in vector calculus is that it simplifies to the scalar multiplied by the divergence of the vector. This property is important in understanding how scalar fields interact with vector fields and helps in analyzing the flow and behavior of physical quantities in various fields of science and engineering.
Both, E=Es + Ev = cB therefore, B= Es/c + Ev/c = Bs + Bv. The electric and magnetic fields are quaternion fields consisting of a scalar field and a vector field. Contemporary Physics has not realized this yet. Correct Relativity Theory is a manifestation of quaternion fields, consisting of a scalar field and three vector fields. This shows up in the Energy Momentum four vector, E= Es +cmV. Actually the Lorentz Force is both scalar and vector: F=qvB = - qv.B + qvxB it makes no sense consider only qvxB and to ignore qv.B.
A scalar times a vector is a vector.
vector
Scalar field and vector field.
Richmond Beckett McQuistan has written: 'Scalar and vector fields: a physical interpretation' -- subject(s): Scalar field theory, Vector analysis
Yes, you can add a scalar to a vector by adding the scalar value to each component of the vector.
Scalar
When multiplying a vector by a scalar, each component of the vector is multiplied by the scalar. This operation changes the magnitude of the vector but not its direction. Similarly, dividing a vector by a scalar involves dividing each component of the vector by the scalar.
An earthquake is neither a scalar nor a vector. It is an event.
vector
vector