answersLogoWhite

0

# include <conio.h>

# include <stdio.h>

unsigned int factorial(int);

void main()

{

unsigned int f;

int a,i,g=0,c=1,j=-1;

clrscr();

scanf("%d",&a);

printf("sine series up to %d terms",a);

for(i=1;i<a;i++)

{

f=factorial(c);

j=j*(-1);

printf(" [(%d(x^%d))/(%d)] ",j,g,f);

if(i!=a)

printf("+");

c=c+2;

g=g+2;

}

getch();

}

unsigned int factorial(int x)

{

int fact=1,i;

for(i=1;i<=x;i++)

fact=fact*i;

return fact;

}

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

Program for sin series in c language?

find the program in c-pgms.blogspot.com


Why you learn java language?

java language moreover solve the problems witch is encounter in c and c++ that s why we use the java language...


Write a c program to solve cos series?

Please do.


How do you solve discrete series by grouping?

You will need to use the distributive law to solve discrete series by grouping. The distributive law is a(b + c) = ab + ac. You will be removing the common factors as you go.


How do you derived the sine law?

Consider any triangle ABC, and let AD be the altitude from A on to BC. Then sin(B) = AD/AB so that AD = AB*sin(B) and sin(C) = AD/AC so that AD = AC*sin(C) Therefore AB*sin(B) = AC*sin(C) or c*sin(B) = b*sin(C) where the lower case letter represents the side opposite the angle with the upper case name. Divide both sides by bc to give sin(B)/b = sin(C)/c. Similarly, using the altitude from B you can show that sin(A)/a = sin(C)/c. Combining with the previous result, sin(A)/a = sin(B)/b = sin(C)/c.


Can you use the law of sines if 3 sides are given?

Yes, but you would need to know a degree measure too. [Sin(A)/a] = [Sin(B)/b] = [Sin(C)/c] [a/Sin(A)] = [b/Sin(B)] = [c/Sin(C)]


How we can solve the equation for two or three unknown in C programming language?

Just as you would do it manually, I mean there is no predefined 'solve_equation' function in C.


How do you get the sides of the triangle when 3 angles are given and its perimeter?

You need to use the sine rule. If the three angles are A, B and C and the sides opposite them are named a, b and c then, by the sine rule, a/sin(A) = b/sin(b) = c/sin(C) Therefore b = a*sin(B)/sin(A) = a*y where y = sin(B)/sin(A) can be calculated and c = a*sin(C)/sin(A) = a*z where z = sin(C)/sin(A) can be calculated. then perimeter = p = a + b + c = a + ay + az = a*(1 + y + z) therefore a = p/(1 + y + z) or a = p/[1 + sin(B)/sin(A) + sin(C)/sin(A)]. Everything on the right hand side is known and so a can be calculated. Once that has been done, b = a*y and c = a*z.


What is the length of side c in Triangle ABC to the nearest whole number if A equals 42 degrees and B equals 87 degrees and a equals 24?

28 The Law of Sines: a/sin A = b/sin B = c/sin C 24/sin 42&#730; = c/sin (180&#730; - 42&#730; - 87&#730;) since there are 180&#730; in a triangle. 24/sin 42&#730; = c/sin 51&#730; c = 24(sin 51&#730;)/sin 42&#730; &asymp; 28


What is the law of sines and the law of cosines and how do they help solve a triangles' angles and sides?

In a triangle ABC, with side a opposite angle A, side b opposite angle B and side c opposite angle C, the sine rule is: sin(A)/a = sin(B)/b = sin(C)/c The cosine rule is: a2 = b2 + c2 - 2bc*cos(A) and, by symmetry, b2 = c2 + a2 - 2ca*cos(B) c2 = a2 + b2 - 2ab*cos(C)


Explain what the Law of sines becomes when one of the angles is a right angle?

The Law of sines: a/sin A = b/sin B = c/sin CIf the angle C in the triangle ABC is 90 degrees, then the triangle ABC is a right triangle, where c is the measure of the hypotenuse, a is the measure of the leg opposite the angle A, and b is the measure of the leg opposite the angle B.Let us observe what happens when sin C = sin 90 degrees = 1.c/sin C = a/sin A cross multiply;c sin A = a sin C divide by c both sides;(c sin A)/c = (a sin C)/c simplify c on the left hand side;sin A = (a sin C)/c = [(a)(1)]/c = a/csin A = (measure of leg opposite the angle A)/(measure of hypotenuse)From the Law of Cosine we know that cos A= (b^2 + c^2 - a^2)/(2bc). If we substitute a^2 + b^2 for c^2, we have:cos A = (b^2 + (a^2+ b^2) - a^2 )/(2ab)cos A = 2b^2 /2ab simplify;cos A = b/c = (measure of leg adjacent the angle A)/(measure of hypotenuse) Therefore tan A = sin A/cos A =(a/c)/(b/c) = (a/c)(c/b) = a/b = (measure of leg opposite the angle A)/(measure of leg adjacent to angle A). And cot A = cos A/sin A = (b/c)/(a/c) = (b/c)(c/a) = b/a = (measure of leg adjacent to angle A)/(measure of leg opposite the angle A).


How do you use the basic trigonometry functions?

To find unknown sides or angles of a triangle. For triangle ABC, if C is a right angle and you are using angle A the side a is the opposite of A, side b is the adjacent side of angle A and c is the hypotenuse. Ex: Sin A = a/c, if you know any 2 you can solve for the 3rd. Cos A = b/c, if you know any 2 you can solve for the 3rd. Tan A = a/b, and again, if you know any 2 you can solve for the 3rd.