The resistors each have a value of 20 ohms. The way to discover it is to apply Ohm's law. It (Ohm's law) comes in 3 "flavors" that look a bit different but all say exactly the same thing. Here they are: E = I x R [Voltage equals current times resistance.] I = E/R [Current equals voltage divided by resistance.] R = E/I [Resistance equals voltage divided by current.] In these equations, voltage is E, current is I and resistance is R. They are measured in units of volts, amperes (or amps) and ohms, respectively. Your problem gives us an applied voltage of 8 volts and a current flow of 0.2 amps. The formula that probably works best is R = E/I for this one because you have volts and amps. In this case, R = 8/0.2 = 40 ohms. But that's the total resistance in the circuit, and you said that a pair of equal resistors are connected, so the pair of resistors has a total resistance of 40 ohms. The rule for finding total resistance for resistors in series is that we add them up. R1 + R2 = 40 ohms. And since R1 = R2 here, 2 x R1 or 2 = 40 ohms, and R1 or 2 = 20 ohms. Either resistor has a resistance of 20 ohms, and that means they both do. Easy as pie.
It depends upon the connection of the resistors, if the resistors are connected in parallel then the voltage is same where as in case of resistors connected in series the voltage is different across different resistors.
Measure the voltage appearing across each resistor. If they are identical, and equal to the supply voltage, then the resistors are in parallel.
The potential difference across two resistors connected in parallel to a battery with a potential difference of 6 volts is 6 volts. Kirchoff's Voltage Law: The signed sum of the voltage drops in a series circuit is zero. This means that that the two series circuits involving the battery and each resistor have the same voltage across each other, and the series circuit involving the two resistors have the same voltage across each other.
If a short occurs in a resistor in series with other resistors, the voltage drops across the other resistors will increase. If a short occurs in a resistor in parallel with other resistors, the voltage drops across the other resistors will decrease, to zero.
Resistors in series add resistance to an electrical circuit. For instance two 1 ohm resistors in series will have 2 ohms of resistance. Resistors in parallel divide the resistance between them. Thus two 2 ohm resistors in parallel will have 1 ohms total resistance. resistors of different sizes work the same way. a 4 ohm and 2 ohm resistor in series have 6 ohms resistance. While in parallel they will have .75 ohm resistance. resistance formulas: series: Req = r1+r2+r3....+rx parallel: Req = 1/r1 + 1/r2 + 1/r3 ..... +1/rx
It depends upon the connection of the resistors, if the resistors are connected in parallel then the voltage is same where as in case of resistors connected in series the voltage is different across different resistors.
Both resistors will have the voltage of the battery.
The supply voltage in a parallel circuit remains the same regardless of the number of additional resistors connected. The voltage across each resistor in a parallel circuit is the same as the supply voltage. Adding more resistors in parallel will increase the total current drawn from the supply.
Resistors connected in parallel have the same voltage across them, while resistors connected in series have the same current passing through them. In a parallel configuration, the total resistance decreases as more resistors are added, while in a series configuration, the total resistance increases.
If three equal resistors are connected in parallel, the equivalent resistance will be one-third of the resistance in series. This lower resistance will result in a higher current flowing through the resistors when connected in parallel compared to when they are in series. Therefore, the power dissipated by the resistors in parallel will be greater than 10W.
In parallel resistors, the voltage across each resistor is the same, but the total voltage across all resistors may vary.
When resistors are connected in parallel to the same voltage source, the overall resistance in the circuit decreases. This is because the current has multiple paths to flow through, reducing the total resistance that the current encounters.
Measure the voltage appearing across each resistor. If they are identical, and equal to the supply voltage, then the resistors are in parallel.
Please specify whether the resistors are connected in series or in parallel.
A: The relationship is that the current will divide for each paths in a parallel circuit and the voltage drop across each will be the source voltage. In a series circuit the current will remain the same for each component but the voltage will divide to reflect each different component value. And the sum of all of the voltage drops will add to the voltage source.
The potential difference across two resistors connected in parallel to a battery with a potential difference of 6 volts is 6 volts. Kirchoff's Voltage Law: The signed sum of the voltage drops in a series circuit is zero. This means that that the two series circuits involving the battery and each resistor have the same voltage across each other, and the series circuit involving the two resistors have the same voltage across each other.
A: The relationship is that the current will divide for each paths in a parallel circuit and the voltage drop across each will be the source voltage. In a series circuit the current will remain the same for each component but the voltage will divide to reflect each different component value. And the sum of all of the voltage drops will add to the voltage source.