#include<stdio.h>
main()
{
int a=0,b=1,n,c,i;
printf("enter number");
scanf("%d",&n);
printf("%d\n",a);
for(i=1;i<=n;i++)
{
c=a+b;
printf("%d\n",c);
b=a;
a=c;
}
getch();
}
Here is a good answer for recursion Fibonacci series. #include <stdio.h> #include <conio.h> long Fibonacci(long n); int main() { long r, n,i; printf("Enter the value of n: "); scanf("%ld",&n); for(i=0;i<=n;i++) { printf(" Fibonacci(%ld)= %ld\n", i,Fibonacci(i)); } getch(); return 0; } long Fibonacci(long n) { if(n==0 n==1) return n; else { return (Fibonacci(n-1)+Fibonacci(n-2)); } } for n=5; Output: Fibonacci(0)=0 Fibonacci(1)=1 Fibonacci(2)=1 Fibonacci(3)=2 Fibonacci(4)=3 Fibonacci(5)=5
//WAP to print fibonacci series using do-while loop.? using System; class Fibonacci { public static void Main() { int a=1,b=1; int sum=0; Console.Write("Enter Limit:"); int n=Int32.Parse(Console.ReadLine()); Console.Write(a); Console.Write(b); do { sum=a+b; a=b; b=sum; Console.Write(sum); } while(sum<n); } } By-Vivek Kumar Keshari
The Importance of Fibonacci's series is that it helps people find more patterns 1+0=1 1+1=2 1+2=3 2+3=5 5+3=8 etc.
To write a C program that calculates the Fibonacci series up to a given number, you can use a loop to generate the series. Start by initializing the first two Fibonacci numbers (0 and 1) and then repeatedly compute the next number by adding the two preceding numbers until you reach or exceed the specified limit. Here’s a simple example: #include <stdio.h> int main() { int n, t1 = 0, t2 = 1, nextTerm; printf("Enter a positive integer: "); scanf("%d", &n); printf("Fibonacci Series: %d, %d", t1, t2); for (int i = 3; i <= n; ++i) { nextTerm = t1 + t2; printf(", %d", nextTerm); t1 = t2; t2 = nextTerm; } return 0; } This program prompts the user for a number and prints the Fibonacci series up to that number.
Identification division. Program-id. Fibonacci. Environment division. Data division. Working-storage section. 77 n pic 9(18). 77 n1 pic z(18). 77 m pic 9(18) value 1. 77 o pic 9(18). 77 i pic 9(4) value 1. 77 q pic x. Procedure division. Para-a. Display ( 1 , 1 ) erase. Display ( 2 , 1 ) "fibonacci numbers from 1 to 100 are:". Move 0 to n. Display " ". Display 0. Display 1. Move 0 to o. Para-b. Compute n = o + m. Move n to n1. Move m to o. Move n to m. Display n1. Add 1 to i. If i = 21 display "press tab key to view next page." accept q. If i = 41 display "press tab key to view next page." accept q. If i = 61 display "press tab key to view next page." accept q. If i = 81 display "press tab key to view next page." accept q if i = 99 go to stop-para else go to para-b. Stop-para. Display " ". Stop run.
/*WAP to display Fibonacci series*/ #include<stdio.h> #include<conio.h> void main() { int i,a=0,b=1,c; scanf("%d",&n); printf("%d\n%d",a,b); for(i=0;i<n;i++) { c=a+b; a=b; b=c; printf("\n%d",c); } getch(); }
20 is not a term in the Fibonacci series.
Fibonacci!
As you expand the Fibonacci series, each new value in proportion to the previous approaches the Golden Ratio.
132134...
Series
It is 354224848179261915075.
The Fibonacci series.
A Fibonacci number series is like the example below, 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610...... and so on in general Fibonacci numbers are just the previous two numbers added together starting with 1 and 0 then goes on forever.
The sum of the previous two numbers in the series.
randomly
10946