answersLogoWhite

0

In FM the carrier is still present and the power is still there, at a constant amplitude at the transmitter. It's only the frequency of the carrier that alters, in time with the audio applied to it. The louder the sound the further the frequency shifts.

User Avatar

Wiki User

9y ago

What else can I help you with?

Continue Learning about Engineering

AM power content of the carrier is maximum when modulation index is?

The AM power content of the carrier is maximum when the modulation index is zero. At this point, there is no modulation applied to the carrier signal, meaning the entire power is concentrated in the carrier frequency itself. As the modulation index increases, the power is distributed between the carrier and the sidebands, resulting in a decrease in the carrier's power content. Thus, maximum carrier power occurs at zero modulation.


What is difference between pulse width modulation and pulse position modulation?

Frequency modulation, as the name suggests, modulates the carrier by changing the frequency of the signal emitted. Pulse width modulation, changes the on-time of a square wave, but leaves the frequency of the carrier wave unchanged. So, in frequency modulation, the frequency will vary between, say, 80kHz and 120kHz with a constant power level, but in pulse width modulation, the frequency will stay at 100kHz, but the on-time (the length of each pulse) will vary, hence the power level will vary accordingly.


What do you think is a carrier's maximum modulation index without over-modulation?

The maximum modulation index for a carrier signal without resulting in over-modulation typically depends on the modulation scheme being used. For standard amplitude modulation (AM), the maximum modulation index is generally 1, meaning the peak envelope power of the modulated signal should not exceed the carrier power. In frequency modulation (FM), the modulation index can be higher, but it should still be kept within limits defined by the system to avoid distortion. Ultimately, the precise value can vary based on specific application requirements and the desired quality of the transmitted signal.


What are the advantages and disadvantages of double sideband suppressed carrier modulation?

Amplitude modulation of a carrier results in a transmitted signal consisting of the carrier, plus an 'upper sideband' and a 'lower sideband', spaced above and below the carrier frequency by the frequency of the modulation.The bandwidth of the whole signal is double the modulation frequency. Also, the power in the carrier is constant, and power must be added in order to radiate the sidebands.All the receiver needs in order to extract the information from the signal is one complete sideband, and knowledge of the frequency and phase of the carrier. Economically speaking, the carrier is wasted power, and the other sideband is wasted power andwasted spectrum.If you can filter away one of the sidebands before transmission, then you save half of the occupied spectrum, and the receiver has everything it needs to decode the signal. If you can also filter away the carrier ... or at least knock it way down ... before transmission, you can save a lot of power and use it for the remaining sideband, which extends your range for a given amount of power. The receiver still has everything it needs, as long as it can pick up a sniff of carrier ... enough to derive the carrier frequency and phase.This mode is known as "Single Sideband Suppressed Carrier". It's exactly how the video portion of standard NTSC analog TV was transmitted, throughout all of human history until June 2009.


How does the intelligence signal modulates the carrier?

There are three major types of modulation:AM, Amplitude Modulation, where the modulation signal is altering the amplitude of the carrier according to its own amplitude, normally this is done in the output stage. Therefor a strong audio signal is necessary at the same or a little less than the power of the carrier, never higher, because that will over modulate the carrier that will resort in distortion of the receiver output. AM is used in the lower band of the RF spectrum.FM, Frequency Modulation, where the frequency of the carrier is altered by the audio signal. When the amplitude of the audio is going higher the frequency go lower. Modulation happen at the oscillator stage, therefor a small audio signal is used to modulate the frequency. FM is normally used in the higher frequency range of the RF spectrum, 50MHz and up.FSK, Frequency-shift keying, used for data transmission, this type of modulation is simply, switching the carrier on and of, a high bit will switch the oscillator on and a low bit will switch it off, in some designs a low will be on and a high off.

Related Questions

AM power content of the carrier is maximum when modulation index is?

The AM power content of the carrier is maximum when the modulation index is zero. At this point, there is no modulation applied to the carrier signal, meaning the entire power is concentrated in the carrier frequency itself. As the modulation index increases, the power is distributed between the carrier and the sidebands, resulting in a decrease in the carrier's power content. Thus, maximum carrier power occurs at zero modulation.


The total power content of an AM signal is 1000W Determine the power being transmitted at the carrier frequency and at each of the sidebands when the percent modulation is 100 percent?

In Double Sideband AM (DSB-AM) modulation, two thirds of the power is consumed by the carrier, so 667W would be transmitted at the carrier frequency. The remaining 333W is split equally between the two sidebands, each being mirror images of each other.


What is difference between pulse width modulation and pulse position modulation?

Frequency modulation, as the name suggests, modulates the carrier by changing the frequency of the signal emitted. Pulse width modulation, changes the on-time of a square wave, but leaves the frequency of the carrier wave unchanged. So, in frequency modulation, the frequency will vary between, say, 80kHz and 120kHz with a constant power level, but in pulse width modulation, the frequency will stay at 100kHz, but the on-time (the length of each pulse) will vary, hence the power level will vary accordingly.


What do you think is a carrier's maximum modulation index without over-modulation?

The maximum modulation index for a carrier signal without resulting in over-modulation typically depends on the modulation scheme being used. For standard amplitude modulation (AM), the maximum modulation index is generally 1, meaning the peak envelope power of the modulated signal should not exceed the carrier power. In frequency modulation (FM), the modulation index can be higher, but it should still be kept within limits defined by the system to avoid distortion. Ultimately, the precise value can vary based on specific application requirements and the desired quality of the transmitted signal.


What are the advantages and disadvantages of double sideband suppressed carrier modulation?

Amplitude modulation of a carrier results in a transmitted signal consisting of the carrier, plus an 'upper sideband' and a 'lower sideband', spaced above and below the carrier frequency by the frequency of the modulation.The bandwidth of the whole signal is double the modulation frequency. Also, the power in the carrier is constant, and power must be added in order to radiate the sidebands.All the receiver needs in order to extract the information from the signal is one complete sideband, and knowledge of the frequency and phase of the carrier. Economically speaking, the carrier is wasted power, and the other sideband is wasted power andwasted spectrum.If you can filter away one of the sidebands before transmission, then you save half of the occupied spectrum, and the receiver has everything it needs to decode the signal. If you can also filter away the carrier ... or at least knock it way down ... before transmission, you can save a lot of power and use it for the remaining sideband, which extends your range for a given amount of power. The receiver still has everything it needs, as long as it can pick up a sniff of carrier ... enough to derive the carrier frequency and phase.This mode is known as "Single Sideband Suppressed Carrier". It's exactly how the video portion of standard NTSC analog TV was transmitted, throughout all of human history until June 2009.


How does the intelligence signal modulates the carrier?

There are three major types of modulation:AM, Amplitude Modulation, where the modulation signal is altering the amplitude of the carrier according to its own amplitude, normally this is done in the output stage. Therefor a strong audio signal is necessary at the same or a little less than the power of the carrier, never higher, because that will over modulate the carrier that will resort in distortion of the receiver output. AM is used in the lower band of the RF spectrum.FM, Frequency Modulation, where the frequency of the carrier is altered by the audio signal. When the amplitude of the audio is going higher the frequency go lower. Modulation happen at the oscillator stage, therefor a small audio signal is used to modulate the frequency. FM is normally used in the higher frequency range of the RF spectrum, 50MHz and up.FSK, Frequency-shift keying, used for data transmission, this type of modulation is simply, switching the carrier on and of, a high bit will switch the oscillator on and a low bit will switch it off, in some designs a low will be on and a high off.


What are the advantages frequency modulation amplitude modulation?

Frequency modulation have some advantages over amplitude modulation, FM is not sensitive to the amplitude noise, and have high efficient use of transmitted power


How transmitted power is related to modulation index in am?

In amplitude modulation (AM), the modulation index (m) represents the ratio of the peak amplitude of the modulating signal to the peak amplitude of the carrier signal. The transmitted power in an AM signal increases with the modulation index, as higher modulation indices lead to greater variations in the carrier's amplitude. Specifically, the total transmitted power can be expressed as a function of the carrier power and the modulation index, with more power being allocated to sidebands as m increases. However, beyond a certain point, further increasing the modulation index can lead to distortion, as the signal may exceed the linear range of the amplifier.


What is the Comparison of frequency modulation and amplitude modulation?

I will answer this in the simplest way I know in the application I use it in; this would be in audio applications. Amplitude modulation is modulation of a carrier source's loudness; Frequency modulation is modulation of a carrier source's pitch; and Phase modulation is modulation of a carrier source's duty cycle/symmetry/timbre. One can often notice that all 3 modulation types relate in some way with another in that when frequency rises and falls it typically makes it favorable for either a rise in loudness or timbre. The most analog way to understand it in nature is typically your small vowel sounds like "iiiiiiiiiiiiii" as in the American-English word 'easy' and 'eeeeeeeeeeee' as in 'edge' are easier to say with loudness at higher pitches; medium vowel sounds like 'uuuuuuuuuuu' as in 'Utter' or 'sOn' and 'aaaaaaaaaaaa' as in 'Awe' *chuckles* are easier to say with loudness at medium pitches; large vowel sounds like 'ooooooooooo' as in 'Oh' and 'uuuuuuuuuuuu' as in 'rUne' are easier to say with loudness at lower pitches. AM is often known as 'tremolo'; FM is often known as 'vibrato'; PM is often known as 'wow'; AM/FM is 'vibremelo' and fill in the blanks for the other sub-variants. Maikel Stellerfield


AM wave frequencies are?

AM stands for Amplitude Modulation. Whatever radio frequency you use, a single frequency would just produce silence at the receiver. You need to superimpose sound frequencies onto the carrier wave. Amplitude modulation does this by varying the Amplitude (strength, power) of the radio carrier wave in time with audio frequency. AM is therefore the kind of 'coding' used and has nothing to do with frequency. By convention, amplitude modulation is mostly used in the medium and long, radio waves. From 150 to 1600 Khz. AM is also used for air band communications at 121Mhz, whereas FM is used at marine frequencies of 156Mhz.


What difference between amplitude modulation and double sideband suppressed carrier?

Both are forms of AM but in suppressed carrier a filter is used to attenuate the carrier frequency prior to transmission. This is usually done to reduce the total transmitter power consumption. An ordinary AM radio cannot correctly receive suppressed carrier stations, you must have a receiver that replaces the carrier prior to the detector stage.


What is the digital pulse modulation?

There are 3 main types of digital pulse modulation:Pulse time modulation (PTM), somewhat similar to analog phase modulation.Pulse width modulation (PWM), the width of the pulse represents the signal.Pulse code modulation (PCM), serial transmission of binary bits forming numeric or character codes that represent the signal.All of these can be modulated on an RF carrier using any of the standard modulation techniques: AM, FM, Phase Modulation, etc. One advantage with AM digital pulse modulation techniques over AM analog is that the carrier can be 100% modulated, which cannot be done with analog, thereby allowing significant reductions in transmitter power without loss of coverage range. Sometimes FM digital pulse modulation techniques are referred to as Frequency Shift Keying (FSK). A very complex method of combining Phase Modulation and AM to increase the bit density of digital pulse modulation on an RF carrier is called Quadrature Amplitude Modulation (QAM).