A matrix (two dimensional array) is a group of lists, or arrays that are organized into one data set. To understand them, first look an example of the standard one dimensional array:
Array "A":
16
8
99
0
5
You can reference any point in the "array" by naming the array and following it with a number representing the position of a piece of data on the list. The first data on the array is represented with a "0", the second with a "1", and so on. For example, A[2] (in bold) represents 99 because it is the third figure of array A. You could imagine the references of the above table as the following:
Array "A":
[0]
[1]
[2]
[3]
[4]
A matrix is a set of arrays. Visualize the following table:
Matrix "B":
16 17 9
8 88 74
99 12 21
0 6 40
5 19 18
There are 3 different arrays in a single data set, "B". In Array A, you could reference any data by naming the point on the list, such as "1" or "3". However, with a matrix, you must give both a row and a column. You can reference data on a matrix in the following format:
MatrixName[row][column]
For example, B[3][2] would represent 40 because it is the it is on the fourth row down and the third column. Remember, matrix references also start at zero, not one! You can reference any of the data on this table with this chart:
Matrix "B":
[0][0] [0][1] [0][2]
[1][0] [1][1] [1][2]
[2][0] [2][1] [2][2]
[3][0] [3][1] [3][2]
[4][0] [4][1] [4][2]
Two-dimensional arrays are used everywhere, but are especially prevalent in computer programming and accounting. If you know any programmers, ask them the last time the last time they used a matrix- I'm sure they'll give you plenty of examples!
A two dimensional array is a one-dimensional array of one-dimensional arrays. That is, just as we can have an array of integers, we can also have an array of integer arrays. This idea can be extended such that we can have an array of two-dimensional arrays (a three-dimensional array), and so on. We typically use a two-dimensional array to represent a table of rows and columns, where each row is a one-dimensional array.
one dementional array and two dementional array
An array of order 4x8 can either be implemented as a one-dimensional array of order 32 or as a one-dimensional array of order 4, where each element is a one-dimensional array of order 8. In either case, the 32 data elements are allocated contiguously and there is no difference in performance. A third way is to implement the one-dimensional array of order 4 as an array of pointers to separately allocated one-dimensional arrays of order 8. The order 4 array is contiguous as are the order 8 arrays, however they need not be contiguous with one another other. This is the least efficient implementation due to the additional level of indirection required to navigate the array.
All arrays are one-dimensional. A two-dimensional array is simply a one-dimensional array of one-dimensional arrays: int a[2][3]; This is an array of 2 elements where each element is itself an array of 3 integers. In other words it is an array of 6 integers. The two dimensions simply allow us to split the array into two sub-arrays of 3 elements each.
If the array is static you can simply point at the first element. For dynamic arrays you can allocate a contiguous block to a single pointer which can then be subdivided using a one-dimensional array of pointer to pointers, each of which points to a one-dimensional array of pointers, each of which points to a separate object within the array. For extremely large arrays, however, it is better to split the elements into separate one-dimensional arrays, by creating a one-dimensional array of pointer to pointers first, then allocating each of those pointers to a separate one-dimensional array of pointers, each of which points to a separate one-dimensional array of objects. Either way, you must destroy all the individual arrays in the reverse order of creation.
A one dimensional array is a scalar value repeated one or more times.A two dimensional array is an array of one dimensional arrays.A three dimensional array is an array of two dimensional arrays, and so forth.The one dimensional array is like a list of things, where the two dimensional array is like an array of things. (Think one row of a spreadsheet versus the whole spreadsheet.)[addendum]Every level of array depth is also a level of pointer depth. For example: A 3 dimensional int array is an int***. So a one dimensional int array is an int*, and a two dimensional int array is an int**. This is only important if you are doing pointer work, but it can become very important.
A one dimensional array is an array of objects that goes in one "direction". Any array with only one [] is a one dimensional array. For example: int numbers[6]; is a one dimensional array. int numbers[6][3]; is a two dimensional array.Graphical terms:One dimensional array[4]:14 - 75 - 8164 - 234Two dimensional array[2][3]:47 - 178108 - 8517 - 128It didn't come out quite how I wanted it...
A two dimensional array is a one-dimensional array of one-dimensional arrays. That is, just as we can have an array of integers, we can also have an array of integer arrays. This idea can be extended such that we can have an array of two-dimensional arrays (a three-dimensional array), and so on. We typically use a two-dimensional array to represent a table of rows and columns, where each row is a one-dimensional array.
one dementional array and two dementional array
A two-dimensional array is the simplest multi-dimensional array and is implemented as a one-dimensional array where every element is itself a one-dimensional array. We can imagine a two-dimensional array as being a table of rows and columns where every row is an array in its own right. A three-dimensional array is simply a one-dimensional array of two-dimensional arrays, which can be imagined as being an array of tables. Extending the concept, a four-dimensional array is a table of tables. Multi-dimensional arrays may be jagged. That is, a two-dimensional array may have rows of unequal length. Unlike regular arrays, jagged arrays cannot be allocated in contiguous memory. Instead, we use the outer array (the first dimension) to store pointers to the inner arrays. An array of strings (character arrays) is an example of a two-dimensional jagged array.
An array of order 4x8 can either be implemented as a one-dimensional array of order 32 or as a one-dimensional array of order 4, where each element is a one-dimensional array of order 8. In either case, the 32 data elements are allocated contiguously and there is no difference in performance. A third way is to implement the one-dimensional array of order 4 as an array of pointers to separately allocated one-dimensional arrays of order 8. The order 4 array is contiguous as are the order 8 arrays, however they need not be contiguous with one another other. This is the least efficient implementation due to the additional level of indirection required to navigate the array.
An array is simply a contiguous block of memory containing two or more elements. There are two types of array: a static array which is allocated on the stack at compile time; and a dynamic array which is allocated on the heap at runtime. Both can be one-dimensional or multi-dimensional. A one-dimensional array can be likened to a row (or column) of chessboard squares, with as many squares as required to store all the elements. A multi-dimensional array is any array with two or more dimensions. A two-dimensional array can be likened to the whole chessboard, where any square can be identified by its row and column index. However the dimensions needn't be equal. A two-dimensional array can also be imagined as a one-dimensional array where every element is simply another one-dimensional array. Three-dimensional arrays can be likened to a cube, or as a one-dimensional array of two-dimensional arrays. A four-dimensional array can be linked to a one-dimensional array of three-dimensional arrays, and so on. Although every one-dimensional array must be allocated in contiguous memory, multi-dimensional arrays can be dynamically allocated so that each dimension is itself a separately allocated one-dimensional array of pointers to the next dimension, making it possible to allocate extremely large arrays over a series of smaller allocations rather than as a single contiguous block.
A One dimensional array is one in which a set of values are present in it. Ex: int[] myArray = new int[4]; The above statement creates a one dimensional array that can hold 4 values.
All arrays are one-dimensional. A two-dimensional array is simply a one-dimensional array of one-dimensional arrays: int a[2][3]; This is an array of 2 elements where each element is itself an array of 3 integers. In other words it is an array of 6 integers. The two dimensions simply allow us to split the array into two sub-arrays of 3 elements each.
If the array is static you can simply point at the first element. For dynamic arrays you can allocate a contiguous block to a single pointer which can then be subdivided using a one-dimensional array of pointer to pointers, each of which points to a one-dimensional array of pointers, each of which points to a separate object within the array. For extremely large arrays, however, it is better to split the elements into separate one-dimensional arrays, by creating a one-dimensional array of pointer to pointers first, then allocating each of those pointers to a separate one-dimensional array of pointers, each of which points to a separate one-dimensional array of objects. Either way, you must destroy all the individual arrays in the reverse order of creation.
Do you perhaps mean -- a two-dimensional array? A two dimensional array is nothing more than a one-dimensional array where every element is a one-dimensional array. int matrix[4][5]; C is a row-major language thus the first dimension refers to the number of rows. Here we have declared an array of 4 rows, where each row is an array of 5 elements of type int.
An array of 2 times 3 is a one-dimensional array of 2 elements each of which is a one-dimensional array of 3 elements. In other words, it is an array of arrays, also known as a two-dimensional array. We can imagine a two dimensional array as being a table with rows and columns. A 2 times 3 array has 2 rows and 3 columns. Each row is itself an array of 3 elements. However, we can also say that each column is an array of 2 elements.