answersLogoWhite

0

In science and engineering, conductors are materials with low resistivity, this due to the presence of mobile charged particles within the material. In metallic conductors, such as copper or aluminum, the movable charged particles are present because atoms have loosely held valence electrons. See electrical conduction. All conductors contain electric charges which will move when an electric potential difference (measured in volts) is applied across separate points on the material. This flow of charge (measured in amperes) is what is meant by electric current. In most materials, the rate of current is proportional to the voltage (Ohm's law,) provided the temperature remains constant and the material remains in the same shape and state. The ratio between the voltage and the current is called the resistance(measured in ohms) of the object between the points where the voltage was applied. The resistance across a standard mass (and shape) of a material at a given temperature is called the resistivity of the material. The inverse of resistance and resistivity is conductance and conductivity. Most familiar conductors are metallic. Copper is the most common material for electrical wiring, and gold for high-quality surface-to-surface contacts. However, there are also many non-metallic conductors, including graphite, solutions of salts, and all plasmas. See electrical conduction for more information on the physical mechanism for charge flow in materials. Non-conducting materials lack mobile charges, and so resist the flow of electric current, generating heat. In fact, all materials offer some resistance and warm up when a current flows. Thus, proper design of an electrical conductor takes into account the temperature that the conductor needs to be able to endure without damage, as well as the quantity of electrical current. The motion of charges also creates an electromagnetic field around the conductor that exerts a mechanical radial squeezing force on the conductor. A conductor of a given material and volume (length x cross-sectional area) has no real limit to the current it can carry without being destroyed as long as the heat generated by the resistive loss is removed and the conductor can withstand the radial forces. This effect is especially critical in printed circuits, where conductors are relatively small and close together, and inside an enclosure: the heat produced, if not properly removed, can cause fusing (melting) of the tracks. Since all conductors have some resistance, and all insulators will carry some current, there is no theoretical dividing line between conductors and insulators. However, there is a large gap between the conductance of materials that will carry a useful current at working voltages and those that will carry a negligible current for the purpose in hand, so the categories of insulator and conductor do have practical utility. Thermal and electrical conductivity often go together (for instance, most metals are both electrical and thermal conductors). However, some materials are practical electrical conductors without being a good thermal conductor In science and engineering, conductors are materials with low resistivity, this due to the presence of mobile charged particles within the material. In metallic conductors, such as copper or aluminum, the movable charged particles are present because atoms have loosely held valence electrons. See electrical conduction. All conductors contain electric charges which will move when an electric potential difference (measured in volts) is applied across separate points on the material. This flow of charge (measured in amperes) is what is meant by electric current. In most materials, the rate of current is proportional to the voltage (Ohm's law,) provided the temperature remains constant and the material remains in the same shape and state. The ratio between the voltage and the current is called the resistance (measured in ohms) of the object between the points where the voltage was applied. The resistance across a standard mass (and shape) of a material at a given temperature is called the resistivity of the material. The inverse of resistance and resistivity is conductance and conductivity. Most familiar conductors are metallic. Copper is the most common material for electrical wiring, and gold for high-quality surface-to-surface contacts. However, there are also many non-metallic conductors, including graphite, solutions of salts, and all plasmas. See electrical conduction for more information on the physical mechanism for charge flow in materials. Non-conducting materials lack mobile charges, and so resist the flow of electric current, generating heat. In fact, all materials offer some resistance and warm up when a current flows. Thus, proper design of an electrical conductor takes into account the temperature that the conductor needs to be able to endure without damage, as well as the quantity of electrical current. The motion of charges also creates an electromagnetic field around the conductor that exerts a mechanical radial squeezing force on the conductor. A conductor of a given material and volume (length x cross-sectional area) has no real limit to the current it can carry without being destroyed as long as the heat generated by the resistive loss is removed and the conductor can withstand the radial forces. This effect is especially critical in printed circuits, where conductors are relatively small and close together, and inside an enclosure: the heat produced, if not properly removed, can cause fusing (melting) of the tracks. Since all conductors have some resistance, and all insulators will carry some current, there is no theoretical dividing line between conductors and insulators. However, there is a large gap between the conductance of materials that will carry a useful current at working voltages and those that will carry a negligible current for the purpose in hand, so the categories of insulator and conductor do have practical utility. Thermal and electrical conductivity often go together (for instance, most metals are both electrical and thermal conductors). However, some materials are practical electrical conductors without being a good thermal conductor

User Avatar

Wiki User

17y ago

What else can I help you with?

Related Questions

What is NS stand for on Wire rolls?

Probably "non-stranded" ... the wire is a single solid conductor, not a bundle of much thinner wires.


What is the collective noun for bundle?

The noun bundle is a collective noun for:a bundle of asparagusa bundle of banknotesa bundle of firewooda bundle of joya bundle of newspapersa bundle of ragsa bundle of papersa bundle of sticksa bundle of trouble


Is bundle a collective noun?

Yes, the noun 'bundle' is a standard collective noun for:a bundle of asparagusa bundle of firewooda bundle of joya bundle of ragsa bundle of papersa bundle of sticksa bundle of trouble


How do you bundle currency for bank deposit?

$20 = $500/bundle; $10 = $250/bundle; $5 = $100/bundle; $1 = $25/bundle $100 = ?/bundle


What sort of noun is bundle?

The word bundle is both a noun and a verb. Bundle as a verb: Please bundle those sticks for me. Bundle as a noun: Thank you for the bundle of sticks.


What part of speech is bundle?

Bundle is a noun (a bundle of something) and a verb (to bundle something).


What is a group of sticks called?

A group of sticks is commonly called a bundle or a sheaf.


What is a Bundle of benefits?

bundle of benefits


What is Bundle of benefits?

bundle of benefits


Where is the transponder aerial on a Citroen Picasso?

aerial


How do you bundle money for the bank?

$1 bills = $100 money bundle $2 bills = $200 money bundle $5 bills = $500 money bundle $10 bills = $1,000 money bundle $20 bills = $2,000 money bundle $50 bills = $5,000 money bundle $100 bills = $10,000 money bundle


What is the syllable for bundle?

Bundle has two syllables.