(a) It reduces the amount of current.
(b) Any current that does pass the resistor will lose some power; this lost power is converted to heat in the resistance.
AnswerInternal resistance acts to reduce the terminal voltage of the voltage source when it supplies a load. This is due to the internal voltage drop caused when the load current passes through the internal resistance of that source. The greater the load, the lower the resulting teminal voltage.
By definition, a voltage source's electromotive force is equal to the sum of the voltage drops, including the internal voltage drop, of the circuit supplied.
No.
Output voltage (...of a transformer, for example...) will decrease as it is loaded because of the transformer's internal resistance. As output current increases/load resistance decreases, a larger voltage will be dropped across the internal transformer resistance. This same phenomenon is present in AC and DC systems (such as batteries).
When a load is connected to the output of a voltage divider, the output voltage will typically decrease due to the loading effect. This occurs because the load draws current, which can change the voltage across the resistors in the divider. The extent of the voltage drop depends on the resistance of the load relative to the resistors in the voltage divider. If the load resistance is significantly lower than the divider resistances, the output voltage will drop more noticeably.
An ideal voltage source has no internal resistance, and a constant voltage output. In reality, all voltage sources (battery, generator, etc.) have some internal resistance, and their voltage may degrade or change over time.Ans 2: An ideal voltage source will have zero input impedance and the voltage can rise to infinity to supply the current.Read more: What_does_an_ideal_voltage_controled_voltage_sources_do
The effect of diode voltage drop as the output voltage is that the input voltage will not be totally transferred to the output because power loss in the diode . The output voltage will then be given by: vout=(vin)-(the diode voltage drop).
No.
Output voltage (...of a transformer, for example...) will decrease as it is loaded because of the transformer's internal resistance. As output current increases/load resistance decreases, a larger voltage will be dropped across the internal transformer resistance. This same phenomenon is present in AC and DC systems (such as batteries).
When a load is connected to the output of a voltage divider, the output voltage will typically decrease due to the loading effect. This occurs because the load draws current, which can change the voltage across the resistors in the divider. The extent of the voltage drop depends on the resistance of the load relative to the resistors in the voltage divider. If the load resistance is significantly lower than the divider resistances, the output voltage will drop more noticeably.
In a series generator, the voltage output is directly affected by the load. As the load increases, the voltage output decreases due to increased voltage drops across the internal resistance of the generator. Conversely, reducing the load will result in an increase in the voltage output.
This question can be answered using voltage dividers. Assume the power supply consists of a voltage source and a resistor. With no load, all of the voltage source's voltage is dissipated by the internal resistor of 15V. When there is a load, there are two resistors in series. To calculate the internal resistance:1. I=V/R. You know the 600ohm resistor dissipated 13.7V. So that would mean a current of 13.7/600=22.8mA2. If the 600ohm resistor dropped 13.7, kirchoff's voltage law would tell us the internal resistor dropped 15-13.7=1.3V.3. R=V/I, Use the current to calculate the internal resistance. 1.3/22.8mA = 56.9ohmsCommentFurther to the above answer, a voltage-source's voltage is not 'dissipated by the internal resistance when on no load'. On no load, there is no current passing through the internal resistance, so no 'voltage dissipation' can takes plac -i.e. the non-load voltage is 15 V.
An ideal voltage source has no internal resistance, and a constant voltage output. In reality, all voltage sources (battery, generator, etc.) have some internal resistance, and their voltage may degrade or change over time.Ans 2: An ideal voltage source will have zero input impedance and the voltage can rise to infinity to supply the current.Read more: What_does_an_ideal_voltage_controled_voltage_sources_do
output resistance decreases and input resistance increases
The effect of diode voltage drop as the output voltage is that the input voltage will not be totally transferred to the output because power loss in the diode . The output voltage will then be given by: vout=(vin)-(the diode voltage drop).
If Rin = Rout, then the voltage at the output of the device goes down to half of the value that the circuit has without the external resistance. Scroll down to related links and look at "Interconnection of two audio units".
A good measure is its internal resistance. If the internal resistance was 1 ohm, the output voltage would fall by 1 volt for every amp of current taken. So - how low is the internal resistance? is a good question to find out how strong the source is.
A light doesn't output current, it "draws" current based on voltage and its resistance. Voltage = Current x Resistance or Current = Voltage / Resistance. (Ohm's Law)
Pin used to eliminate the effect of internal component voltage on the output of the device.