It will vary slightly with changes in atmospheric pressure, but is approximately 472ºF.
No. If you refer to the Temperature/ specific entropy (T - s) diagram for steam, the line segment to the right of the critical point (the point of zero gradient) of the curve is called the dry saturated line and the left segment is the satuated vapour line. As self-explanatory as it sounds, dry saturated steam is on the dry saturated line depending on the given temperature or pressure. The quality (dryness fraction) on the dry saturated line is by definition 1, that means there is no portion of it as vapour. Hence it is in a fully gaseous state.
gjk;lxdjgsdakgh;pa\ gopdsh;msoxhjnsdr Hehehe>:)
Saturated steam occurs when steam and water are in equilibrium. If you have a closed container of water and heat it, above 100 celsius the steam pressure will start to rise, and as the temperature continues to rise, the pressure will go on rising. What is happening is that steam is being evolved to match the temperature (steam tables will give this relation) and the steam conditions are said to be saturated because if the pressure is raised by external means, some of the steam will start to condense back to water.If the steam pressure is held at a lower level than that achieved at saturation, by taking steam off to feed a turbine or other steam usage, there is effectively an excess temperature for that pressure, and the steam is said to be superheated. It in fact then becomes dry, and behaves as a gas. The amount of superheat can be quantified as so many degrees of superheat (celsius or fahrenheit).Turbine designers want steam to be superheated before reaching the turbine, to avoid condensation causing blade erosion, and steam producing boilers in power plants are designed to produce superheated steam. In plants where no turbines are used, only satured steam is normally generated.In heating applications, saturated steam is preferable, because it has a better energy exchange capacity. Superheated steam must cool down, and become saturated steam, before condensing in a heat exchanger. Also, superheated steam is a thermal insulator, like air.That is why it is necessary to direct superheated steam through a desuperheater before using the steam in heating applications.
If by dry steam you mean superheated steam then dry steam because it has a higher calorific value
It is used to convert saturated or wet steam into dry steam for use in steam turbines, which are used for marine propulsion and the generation of electricity. +++ Also used for steam feeding reciprocating engines such as railway locomotives. It is not just a matter of dryness. Superheating allows the steam to work as a gas for longer during its passage through the turbine or cylinder, hence increasing the thermal efficiency of the whole plant.
The unit of dry saturated steam is typically measured in temperature units such as degrees Celsius or Fahrenheit, as it represents the state of steam when it is at its saturation point and in equilibrium with liquid water at the same temperature.
No. If you refer to the Temperature/ specific entropy (T - s) diagram for steam, the line segment to the right of the critical point (the point of zero gradient) of the curve is called the dry saturated line and the left segment is the satuated vapour line. As self-explanatory as it sounds, dry saturated steam is on the dry saturated line depending on the given temperature or pressure. The quality (dryness fraction) on the dry saturated line is by definition 1, that means there is no portion of it as vapour. Hence it is in a fully gaseous state.
can saturated or dry steam be seen
DRY steam is superheated There is a temperature below which steam will start to condense into water droplets. This is called the saturation temperature, and it varies with the pressure of the steam. Steam that is exactly at its saturation temperature is called saturated steam. Steam that is below its saturation temperature contains droplets of moisture and is called wet steam. Steam that is above its saturation temperature is called superheated steam.
gjk;lxdjgsdakgh;pa\ gopdsh;msoxhjnsdr Hehehe>:)
Saturated steam is preferred over dry heat for sterilizing solid and liquid media because it can penetrate materials more effectively and transfer heat more rapidly, resulting in more reliable and efficient sterilization. Saturated steam also operates at a lower temperature, reducing the risk of damaging heat-sensitive materials compared to dry heat.
When water is heated, there is a relation between temperature and pressure at which the water and steam are in equilibrium. This applies up to 374 degC at which the corresponding pressure is 222 bar abs or 3220 psi abs. Beyond this temperature liquid water cannot exist and the steam is said to be supercritical. At any temperature between 100 degC and 374 degC there will therefore be a pressure at which steam is just formed and this is said to be dry saturated steam. It is saturated because if the temperature drops even slightly at the same pressure, steam will condense. If at this same pressure the steam is further heated, it is said to be superheated because it is at a temperature higher than dry saturated steam would be. Superheated steam is desirable for use in steam turbines, because it prevents formation of water droplets as the steam is expanded through the turbine-the droplets could damage the turbine blades. In the supercritical region above 374 degC steam will always exist whatever the pressure, so the concept of superheat does not apply here.
Saturated steam occurs when steam and water are in equilibrium. If you have a closed container of water and heat it, above 100 celsius the steam pressure will start to rise, and as the temperature continues to rise, the pressure will go on rising. What is happening is that steam is being evolved to match the temperature (steam tables will give this relation) and the steam conditions are said to be saturated because if the pressure is raised by external means, some of the steam will start to condense back to water.If the steam pressure is held at a lower level than that achieved at saturation, by taking steam off to feed a turbine or other steam usage, there is effectively an excess temperature for that pressure, and the steam is said to be superheated. It in fact then becomes dry, and behaves as a gas. The amount of superheat can be quantified as so many degrees of superheat (celsius or fahrenheit).Turbine designers want steam to be superheated before reaching the turbine, to avoid condensation causing blade erosion, and steam producing boilers in power plants are designed to produce superheated steam. In plants where no turbines are used, only satured steam is normally generated.In heating applications, saturated steam is preferable, because it has a better energy exchange capacity. Superheated steam must cool down, and become saturated steam, before condensing in a heat exchanger. Also, superheated steam is a thermal insulator, like air.That is why it is necessary to direct superheated steam through a desuperheater before using the steam in heating applications.
That would depend on if the steam is superheated dry steam or not and if superheated dry steam its temperature. It should be possible to google "boiler equations" or "boiler design" to get details.
Saturated steam occurs when steam and water are in equilibrium. If you have a closed container of water and heat it, above 100 celsius the steam pressure will start to rise, and as the temperature continues to rise, the pressure will go on rising. What is happening is that steam is being evolved to match the temperature (steam tables will give this relation) and the steam conditions are said to be saturated because if the pressure is raised by external means, some of the steam will start to condense back to water.If the steam pressure is held at a lower level than that achieved at saturation, by taking steam off to feed a turbine or other steam usage, there is effectively an excess temperature for that pressure, and the steam is said to be superheated. It in fact then becomes dry, and behaves as a gas. The amount of superheat can be quantified as so many degrees of superheat (celsius or fahrenheit). Turbine designers want steam to be superheated before reaching the turbine, to avoid condensation causing blade erosion, and steam producing boilers in power plants are designed to produce superheated steam.
the "current" temperature, ie, the temperature at which wet bulb and dry bulb are the same. when the wet bulb and dry bulb temperaturs equalized the dew point emperature equals them, because the air is saturated now.
If by dry steam you mean superheated steam then dry steam because it has a higher calorific value