answersLogoWhite

0

What else can I help you with?

Continue Learning about Engineering

When DC power is first applied to an uncharged capacitor it appears as a?

When DC power is first applied to an uncharged capacitor it appears as a short circuit.


Can a capacitor charge to its maximum by applying any voltage to it?

A capacitor can charge to its' maximum OR the voltage applied to it, whichever is LESS.


Why ac voltage is always applied across capacitor?

It's not.


Why does the ratio of the voltage to current in capacitor and inductor depend on frequence?

The ratio of voltage to current, or the impedance, of reactive elements such as capacitors and inductors depends on the frequency of the applied wave because they store energy, and the amount of energy they store is directly related to the frequency of the applied waveform. When a DC voltage is applied to a capacitor, the current through the capacitor initially will be large, and will decay down to zero as the capacitor charges. Also, the voltage across the capacitor will be small initially and will increase over time to be equal to the applied voltage. This behavior results in a varying impedance when an AC waveform is applied. At a very low frequency, the capacitor will charge up and discharge similarly to if a DC source was switched into the capacitor for a long period of time there would be a large voltage drop, and small current = high impedance). As the frequency increases, the capacitor will appear more like a DC source was initially switched into the capacitor (low voltage drop and high current = low impedance).


What happens when dielectric breakdown occurs?

The dielectric,usually the insulator between the plates of a capacitor, can be overstressed by the application of too high voltages applied to the capacitor plates. The dielectric breaks down and a current flows between the plates until,either they are discharged, or an equilibrium is reached,below the working voltage of the capacitor. If the dielectric is damaged in this process he capacitor must be replaced. Some dielectric material self heal and can recover from an over voltage.

Related Questions

When DC power is first applied to an uncharged capacitor it appears as a?

When DC power is first applied to an uncharged capacitor it appears as a short circuit.


Will a capacitor lower voltage?

A: As soon as a DC voltage is applied the capacitor is a short or no voltage


What are the three factors that determine the charge of a capacitor?

If you mean the capacity of the capacitor then, Factors are:- Area of of overlap of the plates Separation of the plates How good is the insulating material between the plates (the dielectric) If you mean how large a charge can be stored then, Factors are:- The capacitance of the capacitor (C). The applied voltage (V). Charge Q =CxV V cannot exceed the dielectric's breakdown voltage.


Can a capacitor charge to its maximum by applying any voltage to it?

A capacitor can charge to its' maximum OR the voltage applied to it, whichever is LESS.


Why ac voltage is always applied across capacitor?

It's not.


What is the difference between capacitor and capacitance?

A capacitor is a device that stores an electrical charge, or if you prefer- resists any change in voltage applied to it. Capacitance is a measure of the size or ability of a capacitor to do that. This is the Farad


What two facctors determine the capacitive reactance of a capacitor?

The two factors that determine the capacitive reactance of a capacitor are the frequency of the AC voltage applied to the capacitor and the capacitance value of the capacitor. At higher frequencies and with larger capacitance values, the capacitive reactance decreases.


Why does the ratio of the voltage to current in capacitor and inductor depend on frequence?

The ratio of voltage to current, or the impedance, of reactive elements such as capacitors and inductors depends on the frequency of the applied wave because they store energy, and the amount of energy they store is directly related to the frequency of the applied waveform. When a DC voltage is applied to a capacitor, the current through the capacitor initially will be large, and will decay down to zero as the capacitor charges. Also, the voltage across the capacitor will be small initially and will increase over time to be equal to the applied voltage. This behavior results in a varying impedance when an AC waveform is applied. At a very low frequency, the capacitor will charge up and discharge similarly to if a DC source was switched into the capacitor for a long period of time there would be a large voltage drop, and small current = high impedance). As the frequency increases, the capacitor will appear more like a DC source was initially switched into the capacitor (low voltage drop and high current = low impedance).


WHY does the ratio of the voltage to current in capacitor and inductor depend on frequency?

The ratio of voltage to current, or the impedance, of reactive elements such as capacitors and inductors depends on the frequency of the applied wave because they store energy, and the amount of energy they store is directly related to the frequency of the applied waveform. When a DC voltage is applied to a capacitor, the current through the capacitor initially will be large, and will decay down to zero as the capacitor charges. Also, the voltage across the capacitor will be small initially and will increase over time to be equal to the applied voltage. This behavior results in a varying impedance when an AC waveform is applied. At a very low frequency, the capacitor will charge up and discharge similarly to if a DC source was switched into the capacitor for a long period of time there would be a large voltage drop, and small current = high impedance). As the frequency increases, the capacitor will appear more like a DC source was initially switched into the capacitor (low voltage drop and high current = low impedance).


How does current flow in a capacitor?

Current does not flow through a capacitor in the same way as through a resistor. Instead, when a voltage is applied to a capacitor, it charges up by storing energy in an electric field between its plates. This stored energy can then be released when the capacitor discharges.


What happens when dielectric breakdown occurs?

The dielectric,usually the insulator between the plates of a capacitor, can be overstressed by the application of too high voltages applied to the capacitor plates. The dielectric breaks down and a current flows between the plates until,either they are discharged, or an equilibrium is reached,below the working voltage of the capacitor. If the dielectric is damaged in this process he capacitor must be replaced. Some dielectric material self heal and can recover from an over voltage.


What is the maximum charge that can be stored on the capacitor?

The maximum charge that can be stored on a capacitor is determined by the capacitance of the capacitor and the voltage applied to it. The formula to calculate the maximum charge is Q CV, where Q is the charge, C is the capacitance, and V is the voltage.