When the conductor,magnetic field and motion are perpendicular to each other
The force on current carrying conductor kept in a magnetic field is given by the expression F = B I L sin@ So the force becomes zero when the current carrying conductor is kept parallel to the magnetic field direction and becomes maximum when the current direction is normal to the magnetic field direction. Ok now why does a force exist on the current carrying conductor? As current flows through a conductor magnetic lines are formed aroung the conductor. This magnetic field gets interaction with the external field and so a force comes into the scene.
a magnetic field
Yes,,,a current carrying conductor wil produce magnetic field around it.
north
Hall Effect
The force experienced by a current-carrying conductor in a magnetic field is strongest when the current and magnetic field are perpendicular to each other, maximizing the force according to the right-hand rule.
Conductor magnitude force refers to the force experienced by a current-carrying conductor placed in a magnetic field. This force is known as the Lorentz force and is perpendicular to both the direction of the current and the magnetic field. It can be calculated using the formula F = BIL, where B is the magnetic field strength, I is the current, and L is the length of the conductor in the magnetic field.
The magnetic force experienced by a current-carrying conductor is directly proportional to the magnitude of the current flowing through it. This relationship is described by the right-hand rule for magnetic fields, where the direction of the force on the conductor can be determined by pointing the thumb of your right hand in the direction of the current and the fingers in the direction of the magnetic field.
When a current-carrying conductor is placed in a magnetic field, a force is exerted on the conductor due to the interaction between the magnetic field and the current. This force is known as the magnetic Lorentz force and its direction is perpendicular to both the magnetic field and the current flow. The magnitude of the force depends on the strength of the magnetic field, the current flowing through the conductor, and the length of the conductor exposed to the magnetic field.
The force on current carrying conductor kept in a magnetic field is given by the expression F = B I L sin@ So the force becomes zero when the current carrying conductor is kept parallel to the magnetic field direction and becomes maximum when the current direction is normal to the magnetic field direction. Ok now why does a force exist on the current carrying conductor? As current flows through a conductor magnetic lines are formed aroung the conductor. This magnetic field gets interaction with the external field and so a force comes into the scene.
a magnetic field
To increase the magnetic force in a current-carrying coil or conductor, you can increase the current flowing through it, increase the number of loops in the coil, or use a material with higher magnetic permeability around the coil. These methods will strengthen the magnetic field generated by the coil or conductor.
The shape of the magnetic field lines around a straight current-carrying conductor is circular, with the conductor at the center of each circular loop. These magnetic field lines form concentric circles around the conductor, perpendicular to the direction of the current flow.
A magnetic field can exert a force on a current-carrying wire, causing it to move or experience a torque. This is known as the magnetic force on a current-carrying conductor, according to the right-hand rule.
One device for increasing the magnetic field surrounding a current carrying wire, is to wrap the conductor into a set of co-axial coils. A second device is to include a ferromagnetic material in the core of such a coil.
The magnetic field produced around a current carrying conductor can be detected using a magnetic compass, a Hall effect sensor, or a magnetometer. These devices can detect the direction and strength of the magnetic field generated by the current flowing through the conductor.
When flux density increases, the force experienced by a current-carrying conductor due to a magnetic field (sideways force in this case) will also increase. This is because the force is directly proportional to the magnetic flux density and the current in the conductor.