if the angular speed of an object increase its angular momentum will also increase
If you are referring to the voltage at your residence, then voltage variation is caused by the changes to the load on your supply network. The network load varies throughout the day, being busiest, for example, around lunchtime and around dinnertime. The resulting load current variation causes the supply voltage to vary (it drops when the load current increases) but, by law, your supplier is obliged to maintain any voltage variation within limits -in the UK, for example, these limits are between +10% and -6% of the nominal 230 V.
This question is from Bohr's atomic model. The total length of the orbit is an integral multiple of the wavelength of an electron. The relation given by 2(pi)(radius)=n(wavelength), where n is the principal quantum number. Proof of this came later from De-Broglie's hypothesis, (wavelength)=h/(linear momentum) It is- (wavelength)=h/mv .....I From Bohr's model (Quantization of angular momentum), mvr=nh/2(pi) So, 2(pi)r=n(h/mv) From I, 2(pi)r=n(wavelength)
no the strength of the magnetic field does not decrease because of the number of coils increases.
You can increase the speed of an Yamaha 48 volt golf cart by installing a larger motor or more powerful batteries. This will produce more power to the wheels and more speed.
speed will increase
Angular momentum depends on the mass of an object and its rotational speed. The greater the mass or speed, the greater the angular momentum.
To change the speed without changing the angular momentum, you can change the radius of the rotating object. This is because angular momentum is the product of an object's moment of inertia, its mass, and its angular velocity. By adjusting the radius while keeping the other factors constant, you can alter the speed without affecting the angular momentum.
Linear momentum can be converted to angular momentum through the principle of conservation of angular momentum. When an object with linear momentum moves in a curved path or rotates, its linear momentum can be transferred to create angular momentum. This conversion occurs when there is a change in the object's direction or speed of rotation.
Angular velocity is a measure of how fast an object is rotating around a specific axis, usually measured in radians per second. Angular momentum, on the other hand, is a measure of how difficult it is to stop an object's rotation, calculated as the product of angular velocity and moment of inertia. In simple terms, angular velocity is the speed of rotation, while angular momentum is the rotational equivalent of linear momentum.
Increasing the speed of an object will increase its momentum as well (momentum=mass*velocity).
Spinning the wheels introduces the concept of angular momentum by demonstrating how the rotation of an object around an axis affects its stability and motion. This hands-on activity helps students understand how angular momentum is related to the rotational speed and mass distribution of an object.
Short answer: Angular momentum is proportional to mass. If you double the mass of an object, you double its angular momentum.Long Answer:Angular Momentum is a characteristic of rotating bodies that is basically analogue to linear momentum for bodies moving in a straight line.It has a more complex definition. Relative to an origin, one obtains the position of the object, the vector r and the momentum of the object, the vector p, and then the angular momentum is the vector cross product, L.L=r X p.Since linear momentum, p=mv, is proportional to mass, so is angular momentum.Sometimes we speak of the angular momentum about the center of mass of an object, in which case one must add all of the bits of angular momentum for all the bits of mass at all the positions in the object. That is easiest using calculus.It should also be said that the moment of inertia, I, is proportional to mass and another way to express angular momentum is the moment of inertia times the angular velocity.
Momentum is of two kind. One is linear momentum and the other is angular momentum. Linear momentum is defined as the product of the mass and the velocity. Hence a vector quantity. To change the momentum of a given body with its mass constant, its velocity is to be changed. Velocity change could be made by changing its magnitude or direction or both. Angular momentum is the product of moment of inertial and the angular velocity. Same manner, angular momentum is also a vector quantity as angular velocity is a vector quantity. Most of us think that moment of inertia of a body about any prescribed axis is also a vector quantity. It is totally wrong as far as my approach is concerned. Moment of inertia is a scalar quantity. So to change the momentum, some force can be applied by allowing a moving body to collide with. Angular momentum can be changed by applying torque on it. Torque colloquially saying is a turning force. Moment of effective force about an axis is termed as torque.
Angular velocity means how fast something rotates. The exact definition of angular momentum is a bit more complicated, but it is the rotational equivalent of linear momentum. It is the product of moment of inertia and angular speed.
When the rotational speed of a rotating system doubles, its angular momentum also doubles. This is because angular momentum is directly proportional to both the mass and the rotational speed of the system. Therefore, if the rotational speed doubles, the angular momentum will also double.
The angular momentum is a constant.
It increases in order to conserve angular momentum.