The answer depends on whether the cross sectional radius/diameter are doubles or the cross sectional area is doubled.
Cell constant(C) = Resistance(R) X Specific Conductivity(K)
Resistance of a conductor is defined by the specific resistivity, area of cross section and the length of the conductor. R = rL/A, where R is resistance in OHMs, r is specific resistance, L length in mm, A is area of cross section in sq mm
I think the equation you are looking for is Resistance (ohms) = Resistivity * Length / Area or R=p*L/A. This is the resistance of a circular wire with cross-section of A, length of L, and material with resistivity p. So to get area: Area = Resistivity * Length / Resistance.
Doubling the diameter of a circular-section conductor will quadruple its cross-sectional area and, therefore, reduce its resistance by a quarter. Doubling the length of a conductor will double its resistance. So, in this example, the resistance of the conductor will halve.
Material that makes up the wire, length of wire, diameter of wire, and temperature of wire
The answer depends on whether the cross sectional radius/diameter are doubles or the cross sectional area is doubled.
if length is doubled then resistivity increases&when area is doubled resistivity decreases.
The resistance is directly proportional to the length of conductor and inversely proportional to area of the cross section.If the length is doubled then the resistance will double.Resistance=rho*l/arho=resistivity of the material (Ohms/m) and depends on the material used for the wirel=length of the wirea= area of the cross section of the wire.
resistance is directly proportional to wire length and inversely proportional to wire cross-sectional area. In other words, If the wire length is doubled, the resistance is doubled too. If the wire diameter is doubled, the resistance will reduce to 1/4 of the original resistance.
Cell constant(C) = Resistance(R) X Specific Conductivity(K)
Resistance of a conductor is defined by the specific resistivity, area of cross section and the length of the conductor. R = rL/A, where R is resistance in OHMs, r is specific resistance, L length in mm, A is area of cross section in sq mm
Resistance of a conductor is defined by the specific resistivity, area of cross section and the length of the conductor. R = rL/A, where R is resistance in OHMs, r is specific resistance, L length in mm, A is area of cross section in sq mm
The resistance of the wire is directly proportional to the length and inversely proportional to the area of cross section. Also it depends on the material of the wire with which it is made. So three factors. Length, area of cross section, material.
The material, the length, the cross section.
Resistivity is a property of a substance, and doesn't depend on the dimensions of a sample. If the length of a conductor is doubled, then its resistance doubles but its resistivity doesn't change.
Resistance R =p(L /A)i,e Resistance(R) of a conductor will be directly proportional to its length(L) ==> if the length of the conductor increases its resistance also will increase.i,e Resistance(R) of a conductor is inversely proportional to its cross section area(A) ==> if the Area of the conductor increases its resistance also will decrease.
The resistance of a wire is the length divided by the cross-section area and the conductivity of the material. So for small resistance you need a wire with short length, large cross-section area (diameter) and a material with high conductivity like copper.