answersLogoWhite

0

The voltage is greater than the applied voltage, why?

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Engineering

How is voltage spread out in series circuit?

By Kirchhoff's Voltage Law, the sum of the voltage drops around the series circuit will equal the voltage applied to the circuit.


Why inductor use in series capacitor in parallel?

That depends on the type of circuit you are talking about. Sometimes both an inductor and capacitor are both in parallel with each other. This is called a tank circuit. Sometimes they are both used in series. These are both examples of resonant circuits. Sometimes the inductor can be in parallel with an applied voltage and the capacitor in series. This is a form of high pass filter. On the other hand, the inductor can be in series and the capacitor in parallel to for a low pass filter.


What is the relationship between the voltage output at the interface and the voltage across the series and parallel circuit?

Ohm's law states that the current in a circuit is inversely proportional to the circuit resistance. There is a single path for current in a series circuit. The amount of current is determined by the total resistance of the circuit and the applied voltage.


Can the total of the voltage drop across the loads of a series circuit ever exceed the total of the source voltages applied to that circuit?

no


Why the voltage drop across inductance and voltage drop across capacitance is greater than source voltage in series resonance circuit?

The reason for the total voltage drops across the capacitance and inductance IN AN AC CIRCUIT has to do with the different phase angles of the voltages.First, current is the same value and same phase angle everywhere in a series circuit. But, voltage across a capacitor lags current by 90 degrees (capacitor current leads voltage). Next, voltage across a pure inductance leads current by 90 degrees (inductor current lags voltage).The rule that all voltages in a series circuit have to add to the supply voltage still applies, but in this case, the voltage drops are added VECTORALLY, not arithmetically. If you were to graph this addition, you would show any resistance voltage in phase with the current, the capacitor voltage at -90 degrees to the current and the inductor voltage at +90 degrees to the current, for a phase difference between them of 180 degrees, cancelling each other out.In a series resonant circuit, the impedances of the capacitor and inductor cancel each other. The only impedance to the flow of current is any resistance in the circuit. Since real-life inductors always have some resistance, at least there is always some resistance in a series resonant circuit.

Related Questions

The resistor in an R-L series circuit has a voltage drop of 53V and the inductor has a voltage drop of 28V what is the applied voltage of the circuit?

The applied voltage is 53+28 = 81V.


How is voltage spread out in series circuit?

By Kirchhoff's Voltage Law, the sum of the voltage drops around the series circuit will equal the voltage applied to the circuit.


Why inductor use in series capacitor in parallel?

That depends on the type of circuit you are talking about. Sometimes both an inductor and capacitor are both in parallel with each other. This is called a tank circuit. Sometimes they are both used in series. These are both examples of resonant circuits. Sometimes the inductor can be in parallel with an applied voltage and the capacitor in series. This is a form of high pass filter. On the other hand, the inductor can be in series and the capacitor in parallel to for a low pass filter.


The applied voltage in a circuit equals the sum of the circuits individual what?

For a series circuit, the applied voltage equals the sum of the voltage drops


What is the relationship between the voltage output at the interface and the voltage across the series and parallel circuit?

Ohm's law states that the current in a circuit is inversely proportional to the circuit resistance. There is a single path for current in a series circuit. The amount of current is determined by the total resistance of the circuit and the applied voltage.


What is the voltage in a series circuit where multiple components are connected in a series, known as series circuit voltage?

In a series circuit, the voltage is the same across all components connected in a series. This is known as the series circuit voltage.


If you add the IR drop or voltage drop of each individual resistance in a series circuit is it equal to the applied voltage?

Yes


Can the total of the voltage drop across the loads of a series circuit ever exceed the total of the source voltages applied to that circuit?

no


Why the voltage drop across inductance and voltage drop across capacitance is greater than source voltage in series resonance circuit?

The reason for the total voltage drops across the capacitance and inductance IN AN AC CIRCUIT has to do with the different phase angles of the voltages.First, current is the same value and same phase angle everywhere in a series circuit. But, voltage across a capacitor lags current by 90 degrees (capacitor current leads voltage). Next, voltage across a pure inductance leads current by 90 degrees (inductor current lags voltage).The rule that all voltages in a series circuit have to add to the supply voltage still applies, but in this case, the voltage drops are added VECTORALLY, not arithmetically. If you were to graph this addition, you would show any resistance voltage in phase with the current, the capacitor voltage at -90 degrees to the current and the inductor voltage at +90 degrees to the current, for a phase difference between them of 180 degrees, cancelling each other out.In a series resonant circuit, the impedances of the capacitor and inductor cancel each other. The only impedance to the flow of current is any resistance in the circuit. Since real-life inductors always have some resistance, at least there is always some resistance in a series resonant circuit.


What ia series circuit?

A circuit in which elements are connected in series.For example in RLC series circuit resistor,inductor and capacitor are connected in series.


What is total voltage in a series circuits?

In a series circuit the total voltage is the sum of the voltage drops across all the component in series. When the voltage drops across each the individual components are added up, they will equal the supply (or applied) voltage.


Why is voltage split over a series circuit?

Voltage drop due to the resistance present in the series circuit causes voltage split over a series circuit.