1.start
2.a=0,b=1,c and counter
3.display a
4.display b
5.c=a+b
6.display c
7.a=b
8.b=c
9.check whether number is less than the last number you have
if yes than go to step 5
if no stop it
To write a C program that calculates the Fibonacci series up to a given number, you can use a loop to generate the series. Start by initializing the first two Fibonacci numbers (0 and 1) and then repeatedly compute the next number by adding the two preceding numbers until you reach or exceed the specified limit. Here’s a simple example: #include <stdio.h> int main() { int n, t1 = 0, t2 = 1, nextTerm; printf("Enter a positive integer: "); scanf("%d", &n); printf("Fibonacci Series: %d, %d", t1, t2); for (int i = 3; i <= n; ++i) { nextTerm = t1 + t2; printf(", %d", nextTerm); t1 = t2; t2 = nextTerm; } return 0; } This program prompts the user for a number and prints the Fibonacci series up to that number.
wefwfe
#include<stdio.h> void printFibonacci(int); int main(){ int k,n; long int i=0,j=1,f; printf("Enter the range of the Fibonacci series: "); scanf("%d",&n); printf("Fibonacci Series: "); printf("%d %d ",0,1); printFibonacci(n); return 0; } void printFibonacci(int n){ static long int first=0,second=1,sum; if(n>0){ sum = first + second; first = second; second = sum; printf("%ld ",sum); printFibonacci(n-1); } }
Here is a good answer for recursion Fibonacci series. #include <stdio.h> #include <conio.h> long Fibonacci(long n); int main() { long r, n,i; printf("Enter the value of n: "); scanf("%ld",&n); for(i=0;i<=n;i++) { printf(" Fibonacci(%ld)= %ld\n", i,Fibonacci(i)); } getch(); return 0; } long Fibonacci(long n) { if(n==0 n==1) return n; else { return (Fibonacci(n-1)+Fibonacci(n-2)); } } for n=5; Output: Fibonacci(0)=0 Fibonacci(1)=1 Fibonacci(2)=1 Fibonacci(3)=2 Fibonacci(4)=3 Fibonacci(5)=5
#include #include void main(void) { int i,j,k,n; clrscr(); i=0; j=1; printf("%d %d ",i,j); for(n=0;n<=5;n++) { k=i+j; i=j; j=k; printf("%d ",k); } getch(); }
Exactly what do you mean by 'C program in Java'
20 is not a term in the Fibonacci series.
An algorithm is a series of steps leading to a result. A flowchart can be a graphical representation of the algorithm.
Fibonacci!
As you expand the Fibonacci series, each new value in proportion to the previous approaches the Golden Ratio.
132134...
Series
It is 354224848179261915075.
The Fibonacci series.
A Fibonacci number series is like the example below, 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610...... and so on in general Fibonacci numbers are just the previous two numbers added together starting with 1 and 0 then goes on forever.
wefwfe
The sum of the previous two numbers in the series.