PIERRE DE FERMAT' S LAST THEOREM.
CASE SPECIAL N=3 AND.GENERAL CASE N>2. .
THE CONDITIONS.Z,X,Y,N ARE THE INTEGERS . Z*X*Y*N>0.N>2.
Z^3=/=X^3+Y^3 AND Z^N=/=X^N+Y^N.
SPECIAL CASE N=3.
WE HAVE
(X^2+Y^2)^2=X^4+Y^4+2X^2*Y^2.
BECAUSE
X*Y>0=>2X^2*Y^2>0.
SO
(X^2+Y^2)^2=/=X^4+Y^4.
CASE 1. IF
Z^2=X^2+Y^2
SO
(Z^2)^2=(X^2+Y^2)^2
BECAUSE
(X^+Y^2)^2=/=X^4+Y^4.
SO
(Z^2)^2=/=X^4+Y^4.
SO
Z^4=/=X^4+Y^4.
CASE 2. IF
Z^4=X^4+Y^4
BECAUSE
X^4+Y^4.=/= (X^2+Y^2.)^2
SO
Z^4=/=(X^2+Y^2.)^2
SO
(Z^2)^2=/=(X^2+Y^2.)^2
SO
Z^2=/=X^2+Y^2.
(1) AND (2)=> Z^4+Z^2=/=X^4+Y^4+X^2+Y^2.
SO
2Z^4+2Z^2=/=2X^4+2Y^4+2X^2+Y^2.
SO
(Z^4+Z^2+2Z^3+Z^4+Z^2-2Z^3)=/=(X^4+X^2+2X^3+X^4+X^2-2X^3)+)(Y^4+Y^2+2Y^3+Y^4+Y^2-2Y^3)
SO IF
(Z^4+Z^2+2Z^3)/4=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4
=> (Z^4+Z^2-2Z^3)/4=/=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3/4)
AND
SO IF
(Z^4+Z^2-2Z^3)/4=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3)./4
=> (Z^4+Z^2+2Z^3)/4=/=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4
BECAUSE
(Z^4+Z^2+2Z^3)/4 - (Z^4+Z^2-2Z^3)/4 =Z^3.
SO
Z^3=/=X^3+Y^3.
GENERAL CASE N>2.
Z^N=/=X^N+Y^N.
WE HAVE
[X^(N-1)/2+Y^(N-1)/2]^(N+1)/(N-1)=X^(N+1)/2+Y^(N+1)/2+ H.
BECAUSE X*Y>0=>H>0.
SO
[X^(N-1)/2+Y^(N-1)/2]^(N+1)/(N-1)=/= X^(N+1)/2+Y^(N+1)/2
CASE 1. IF
Z^(N-1)/2=X^(N-1)/2+Y^(N-1)/2
SO
[Z^(N-1)/2]^(N+1)/(N-1)=[X^(N-1)/2+Y^(N-1)/2 ]^(N+1)/(N-1).
BECAUSE
[X^(N-1)/2+Y^(N-1)/2 ]^(N+1)/(N-1)=/=X^(N+1)/2+Y(N+1)/2.
SO
[Z^(N-1)/2]^(N+1)/(N-1)=/=X^(N+1)/2+Y(N+1)/2.
SO
Z^(N+1)/2=/=X^(N+1)/2+Y^(N+1)/2.
CASE 2. IF
Z^(N+1)/2=X^(N+1)/2+Y^(N+1)/2
SO
[Z^(N+1)/2]^(N-1)/(N+1)=[X^(N+1)/2+Y^(N+1)/2 ]^(N-1)/(N+1)
BECAUSE
[X^(N+1)/2+Y^(N+1)/2](N-1)/(N+1)=/=X(N-1)/2+Y^(N-1)/2.
SO
[Z^(N+1)/2]^(N-1)/(N+1)=/=X(N-1)/2+Y^(N-1)/2.
SO
Z^(N-1)/2=/=X(N-1)/2+Y^(N-1)/2..
SO
(1) AND (2)=> Z^(N+1)/2+Z^(N-1)/2=/=X^(N+1)/2+Y^(N+1)/2+X^(N-1)/2+Y^(N-1)/2.
SO
2[Z^(N+1)/2+Z^(N-1)/2]=/=2[X^(N+1)/2+Y^(N+1)/2]+2[X^(N-1)/2+Y^(N-1)/2.]
SO
[Z^(N+1)/2+Z^(N-1)/2+2Z^N ]+[Z^(N+1)/2+Z^(N-1)/2-2Z^N ]=/=[X^(N+1)/2+X^(N-1)/2+2X^N ]+[X^(N+1)/2+X^(N-1)/2-2X^N ]+[Y^(N+1)/2+Y^(N-1)/2+2Y^N ]+[Y^(N+1)/2+Y^(N-1)/2-2Y^N ]
SO IF
[Z^(N+1)/2+Z^(N-1)/2+2Z^N ]/4=[X^(N+1)/2+X^(N-1)/2+2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2+2Y^N ]/4=>
[Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=/=[X^(N+1)/2+X^(N-1)/2-2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2-2Y^N ]/4
AND
IF
[Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=[X^(N+1)/2+X^(N-1)/2-2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2-2Y^N ]/4
=>
[Z^(N+1)/2+Z^(N-1)/2+2Z^N ]/4=/=[X^(N+1)/2+X^(N-1)/2+2X^N ]/4 + [Y^(N+1)/2+Y^(N-1)/2+2Y^N ]/4
BECAUSE
[Z^(N+1)/2+Z^(N-1)/2+2Z^N ] /4- [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=Z^N.
SO
Z^N=/=X^N+Y^N
HAPPY&PEACE.
Trantancuong.
There are a lot of geniuses in this laboratory.The geniuses solved the problem of world hunger.
Everyone needs an education of some description
The plural of genius is geniuses. As in "the geniuses are in the room".
Evil Geniuses was created in 1999.
Sports Geniuses was created in 2000.
Not necessarily. While some geniuses may exhibit characteristics of being physically frail or socially isolated due to their intense focus on intellectual pursuits, this is not a definitive trait of all geniuses. Geniuses can come in various forms and personalities, and their physical and social traits can vary widely.
The duration of Baby Geniuses is 1.58 hours.
An average IQ is around 100. Anything beyond that is a plus. Some people, geniuses or close to geniuses, have an IQ of 180. Added: Generally, 130 or above.
Baby Geniuses was created on 1999-03-12.
Baby Geniuses was released on 03/12/1999.
The Production Budget for Baby Geniuses was $13,000,000.
Which one of you two geniuses thought up that bright idea?