After transcription, the mRNA produced is modified through processes like capping and polyadenylation. This modified mRNA then leaves the nucleus and enters the cytoplasm where it can be translated into a protein by ribosomes.
The transcription process stops.mRNA detaches and moves to the ribosomesTranscription is the first step of gene expression, in which a particular segment of DNA is copied into RNA by the enzyme RNA polymerase.
The end product of transcription is messenger RNA (mRNA).
After transcription ends, the newly synthesized RNA molecule undergoes processing. In eukaryotes, this includes capping at the 5' end, addition of a poly-A tail at the 3' end, and splicing to remove introns. The mature mRNA is then transported from the nucleus to the cytoplasm, where it can be translated into proteins. In prokaryotes, the process is more direct, as transcription and translation can occur simultaneously without extensive RNA processing.
After transcription ends, the newly synthesized mRNA undergoes several processing steps before it can be used for translation. This includes the addition of a 5' cap and a poly-A tail at the 3' end, which protect the mRNA from degradation and aid in its export from the nucleus. Additionally, introns are spliced out, and exons are joined together to form a mature mRNA molecule that can be translated into protein.
acts as a transcription factor and binds to DNA, activating a gene
They end up in the trash can, right? :)
The transcription process stops.mRNA detaches and moves to the ribosomesTranscription is the first step of gene expression, in which a particular segment of DNA is copied into RNA by the enzyme RNA polymerase.
The DNA double helix unwinds.
Transcription results in the synthesis of a complementary RNA molecule from a DNA template. Translation involves the conversion of this RNA molecule into a specific sequence of amino acids, forming a protein. The end result of translation is the production of a functional protein that can perform specific cellular functions.
During gene expression, transcription occurs in the direction from the 5' to the 3' end of the DNA strand.
No, splicing does not occur during transcription. Splicing is a process that happens after transcription, where non-coding regions of the RNA molecule are removed and the coding regions are joined together to form the final mRNA molecule.
Transcription needs to be controlled to regulate gene expression in response to cellular signals and environmental conditions. This control allows the cell to produce the right proteins at the right time in the right amount, ensuring proper cell function and maintaining homeostasis. Overactive or underactive transcription can lead to diseases and developmental abnormalities.