Anthony Stokes's birth name is Anthony DeSean Stokes.
Christopher Monroe Stokes's birth name is Christopher Monroe Stokes.
Richard Stokes was born in 1897.
Jack Stokes died in 2000.
Doris Stokes was born on January 6, 1920.
A. Arnone has written: 'A Navier-Stokes solver for cascade flows' -- subject(s): Cascade flow, Navier-Stokes equation
In fluid dynamics, the energy equation and the Navier-Stokes equations are related because the energy equation describes how energy is transferred within a fluid, while the Navier-Stokes equations govern the motion of the fluid. The energy equation accounts for the effects of viscosity and heat transfer on the fluid flow, which are also considered in the Navier-Stokes equations. Both equations are essential for understanding and predicting the behavior of fluids in various situations.
http://en.wikipedia.org/wiki/Navier-Stokes_equations Please go to this page.
Moshe Israeli has written: 'Marching iterative methods for the parabolized and thin layer Navier-Stokes equations' -- subject(s): Iterative solution, Navier-Stokes equation
Yuichi Matsuo has written: 'Navier-Stokes simulations around a propfan using higher-order upwind schemes' -- subject(s): Prop-fans, Navier-Stokes equation
Peter M. Hartwich has written: 'High resolution upwind schemes for the three-dimensional, incompressible Navier-Stokes equations' -- subject(s): Navier-Stokes equation, Upwind schemes
it is easy you can see any textbook........
Dochan Kwak has written: 'Computation of viscous incompressible flows' -- subject(s): Computational fluid dynamics, Space shuttle main engine, Three dimensional flow, Incompressible flow, Finite difference theory, Navier-Stokes equation 'An incompressible Navier-Stokes flow solver in three-dimensional curvilinear coordinate system using primitive variables' -- subject(s): Spherical coordinates, Navier-Stokes equation
Klaus A. Hoffmann has written: 'Comparative analysis of Navier-Stokes codes - accuracy and efficiency' -- subject(s): Navier-Stokes equation 'Computational fluid dynamics for engineers' -- subject(s): Fluid dynamics, Numerical analysis
W. Kelly Londenberg has written: 'Transonic Navier-Stokes calculations about a 65 degree Delta wing' -- subject(s): Delta wings, Turbulence models, Navier-Stokes equation, Transonic flow, Vortices
Chistopher A. Kennedy has written: 'Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations' -- subject(s): Stability, Errors, Direct numerical simulation, Wave equations, Runge-Kutta method, Navier-Stokes equation
George Gabriel Stokes significantly contributed to the Navier-Stokes equations through his work on fluid dynamics, particularly in the formulation of the equations that describe the motion of viscous fluid substances. He introduced the concept of viscosity and derived equations that model the flow of incompressible fluids. His work laid the foundational principles necessary for the development of the Navier-Stokes equations, which are essential for understanding fluid flow in various applications, from aerodynamics to oceanography. Stokes' contributions ultimately helped formalize the mathematical framework that governs the behavior of fluid motion.