answersLogoWhite

0

José Cos y Macho died in 1919.

User Avatar

Wiki User

11y ago

What else can I help you with?

Related Questions

When was José Cos y Macho born?

José Cos y Macho was born in 1838.


When did Odón de Buen y del Cos die?

Odón de Buen y del Cos died in 1945.


What is the implicit differentiation of y equals sin x plus y?

y = sin(x+y) cos( x + y )[(1 + y')] = y' cos(x + y ) + y'cos(x + y ) = y' y'-y'cos( x+ y) = cos( x + y ) y'[1-cos(x+y)]= cos(x+y) y'= [cos(x+y)]/ [1-cos(x+y)]


Does cos (x plus y) cos x plus cos y?

The expression (\cos(x + y) \cos x + \cos y) does not simplify to a standard identity. Instead, it can be rewritten using the angle addition formula for cosine: (\cos(x + y) = \cos x \cos y - \sin x \sin y). Therefore, the original expression is not generally true, and its simplification would depend on specific values of (x) and (y).


1 over cos y is equal to?

1/cos y = sec y


What are the sum and difference identities for the sine cosine and tangent functions?

Sine sum identity: sin (x + y) = (sin x)(cos y) + (cos x)(sin y)Sine difference identity: sin (x - y) = (sin x)(cos y) - (cos x)(sin y)Cosine sum identity: cos (x + y) = (cos x)(cos y) - (sin x)(sin y)Cosine difference identity: cos (x - y) = (cos x)(cos y) + (sin x)(sin y)Tangent sum identity: tan (x + y) = [(tan x) + (tan y)]/[1 - (tan x)(tan y)]Tangent difference identity: tan (x - y) = [(tan x) - (tan y)]/[1 + (tan x)(tan y)]


How do you solve cos squared x - cosx equals 2 for 0x2pi?

cos2(x) - cos(x) = 2 Let y = cos(x) then y2 - y = 2 or y2 - y - 2 = 0 factorising, (y - 2)(y + 1) = 0 that is y = 2 or y = -1 Substitutng back, this would require cos(x) = 2 or cos(x) = -1 But cos(x) cannot be 2 so cos(x) = -1 Then x = cos-1(-1) => x = pi radians.


What does El amigo es macho grande y largo mean?

El amigo es macho grande y largo. The friend is big and large.


How do you find conjugate of cos z?

To find the conjugate of ( \cos z ) for a complex number ( z = x + iy ) (where ( x ) and ( y ) are real numbers), you can use the formula for the cosine of a complex argument: [ \cos z = \cos(x + iy) = \cos x \cosh y - i \sin x \sinh y. ] The conjugate of ( \cos z ) is obtained by taking the complex conjugate of the expression, resulting in: [ \overline{\cos z} = \cos x \cosh y + i \sin x \sinh y. ]


If Sin equals x and Cos equals y then x squared equals what function of y?

If x = sin θ and y = cos θ then: sin² θ + cos² θ = 1 → x² + y² = 1 → x² = 1 - y²


What is the derivative of cos pi x plus sin pi y all to the 8th power equals 44?

(cos(pi x) + sin(pi y) )^8 = 44 differentiate both sides with respect to x 8 ( cos(pi x) + sin (pi y ) )^7 d/dx ( cos(pi x) + sin (pi y) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (-sin (pi x) pi + cos (pi y) pi dy/dx ) = 0 8 ( cos(pi x) + sin (pi y ) )^7 (pi cos(pi y) dy/dx - pi sin (pi x) ) = 0 cos(pi y) dy/dx - pi sin(pi x) = 0 cos(pi y) dy/dx = sin(pi x) dy/dx = sin (pi x) / cos(pi y)


Find y'' if y equals 6x sinx?

That means you must take the derivative of the derivative. In this case, you must use the product rule. y = 6x sin x y'= 6[x (sin x)' + (x)' sin x] = 6[x cos x + sin x] y'' = 6[x (cos x)' + (x)' cos x + cos x] = 6[x (-sin x) + cos x + cos x] = 6[-x sin x + 2 cos x]