As the velocity decreases, the momentum increases.
Mass is the matter inside of something and momentum is how hard it is to stop something. Therefore momentum needs mass to function because without mass there would be no momentum. So think of the sentence above like this: velocity ( a measure of momentum) decreases, the momentum (including mass inside an object) goes up therefore making the mass increase while the velocity decreases.
== == Momentum is the product of the mass of an object multiplied by its velocity (or speed). Momentum is conserved so if a moving object hits a staionary object the total momentum of the two objects after the collision is the same as the momentum of the original moving object.
Momentum = Mass x Velocity. (p=m*v)The mass of an object made of matter can not be zero.If the object (car) is moving, then the velocity will be non-zero, and the object will have non-zero momentum.So, if you are driving or rolling the car, it has momentum.If it is parked, then it will have 0 velocity (with respect to the earth), and thus will have 0 momentum.So, when the car is moving, it has net momentum. When it is parked it has zero momentum. I then just becomes a mater of semantics whether having zero momentum is equivalent to not having momentum, or if it is actually a valid value for momentum or state of momentum.
yes moving objects have impulse
Yes, mass will affect momentum in a collision or in anything else. Any object with mass and non-zero velocity will have momentum. Mass is directly proportional to momentum. Double the mass of an object moving with a given velocity and the momentum doubles.
Well, honey, technically speaking, yes, an object can have kinetic energy without momentum. See, momentum depends on both an object's mass and velocity, while kinetic energy only cares about velocity. So, if you have an object with mass but no velocity, it won't have momentum but can still have some kinetic energy.
Speed directly affects momentum. Momentum is the product of an object's mass and its velocity, so the faster an object is moving, the higher its momentum will be. This means that an object moving at a higher speed will have greater momentum compared to the same object moving at a lower speed.
The property that a moving object has due to its mass and velocity is momentum. Momentum is calculated as the product of mass and velocity, and it represents how difficult it is to stop a moving object.
No, a stationary object does not have momentum because momentum is the product of an object's mass and its velocity. If an object is not moving (velocity is zero), then its momentum will also be zero.
The momentum of a moving object depends on its mass and velocity. Momentum is calculated by multiplying an object's mass by its velocity, making it directly proportional to both factors.
Impulse is defined as the change in momentum of an object. When a force is applied to an object over a period of time, it causes a change in the object's velocity, which in turn affects its momentum. Therefore, impulse affects momentum by altering the velocity of an object, leading to a change in its momentum.
The momentum of a moving object is a characteristic related to its mass and velocity. Momentum is the product of an object's mass and its velocity, and it measures the quantity of motion an object possesses.
The property that depends on an object's mass and velocity is its momentum. Momentum is calculated as the product of an object's mass and its velocity. It is a vector quantity, meaning it has both magnitude and direction.
A fast-moving car has more momentum than a slow-moving car because momentum is directly proportional to an object's velocity. The momentum of an object is the product of its mass and velocity, so the faster the object is moving, the greater its momentum.
Yes, if a moving object's velocity decreases, its momentum will also decrease as momentum is directly proportional to velocity. Momentum is calculated as mass multiplied by velocity, so any change in velocity will result in a change in momentum in the same direction.
Yes, a body moving with uniform acceleration has momentum. Momentum is the product of an object's mass and its velocity, and acceleration is the rate of change of velocity. As long as the object is moving and has mass, it will have momentum.
The momentum of a moving object is determined by its mass and velocity. The greater the mass and the faster the velocity of the object, the greater its momentum. Momentum is a vector quantity, meaning it has both magnitude and direction.
The property of a moving object that equals its mass times its velocity is momentum. Momentum is a vector quantity that describes the motion and inertia of an object. It is calculated using the formula: momentum = mass x velocity.