1
Because the mechanical advatage of a movable pulley is always two you multipy the input force times two. So 50 * 2 = 100N
A pulley system that has multiple pulleys in line with each one having its output drive the next will increase the force. This would be called a tackle pulley.
The idea is to divide the output force by the input force.
The answer is mechanical advantage, not efficiency!
A lever is a very useful tool that lets us exchange weight for distance. For example (theoretically) if you had to move a 200 pound sack into a car, but couldn't lift it, you could divide it into 8 parts, each being 25 pounds, and move each one individually into the car. It would be easy, however it would take more distance (lifting into the car 8 times instead of 1)
The mechanical advantage of the pulley system in this case is 1:1. This means that the input force and output force are equal, resulting in no mechanical advantage gained.
The input force is the force applied to the pulley by the person or machine. The output force is the force exerted by the pulley to move the load. The output force is typically higher than the input force due to mechanical advantage.
The ideal mechanical advantage of a fixed pulley is 1, as it does not provide any mechanical advantage in terms of force. The direction of the input (effort) and output (load) for a fixed pulley is the same, as the pulley simply changes the direction of the force applied.
The actual mechanical advantage of a pulley system is calculated by dividing the output force by the input force. It is the ratio of the load force being lifted to the force applied to lift it. This value indicates how much the pulley system amplifies the force applied.
Thew pulley changes the direction of the effort force.
Depends what the input force is and the mechanical advantage of the pulley system If effort force (input force) is 20 pounds in a 6 pulley system (3 fixed,3 movable) then load force (output force) is 120 pounds As 6 times 20 equals 120 pounds
A pulley system has a mechanical advantage of 1 when the input force equals the output force, resulting in no mechanical advantage. This occurs when the pulley is stationary and only redirects the force, without increasing or decreasing it.
In this case, the mechanical advantage is 1:1 because the output force is equal to the input force. Mechanical advantage is calculated by dividing the output force by the input force. Since they are both 3 N, the mechanical advantage is 1.
The mechanical advantage of a pulley system is the ratio of the output force to the input force. It is calculated by dividing the load force by the effort force required to lift the load. The mechanical advantage of a pulley system can be greater than 1, making it easier to lift heavy objects.
To analyze the mechanical advantage of a pulley system, you calculate it by dividing the output force (load) by the input force (applied force). The mechanical advantage of a pulley system is equal to the number of rope sections supporting the load. More rope sections mean a greater mechanical advantage.
A pulley with a mechanical advantage of 1 means that the input force is equal to the output force. Essentially, the forces required to lift an object using the pulley are the same on both sides, making it easier to lift the load.
To calculate mechanical advantage, you need to know the input force and the output force. Mechanical advantage is calculated by dividing the output force by the input force. It provides a measure of how much a machine multiplies force or changes the direction of force.