Light (Optical) Microscope:
Basically it acts as a two stage magnifying device. An objective lens provides the initial enlargement and an ocular lens is placed so as to magnify the primary image a second time. Total magnification is obtained by multiplying the magnifying power of the objective and ocular lenses. An additional condensing lens is normally employed beneath the stage of microscopes to concentrate the light from its source into a very bright beam illuminating the object, thus providing sufficient light for inspection of the magnified image.
Polarizing Microscope:
Many natural objects including crystals & fibers exhibit special optical property known as double refraction or birefringence. In histological material, birefringence is caused by asymmetric particles, too small to be resolved even by best possible lenses. The polarizing microscope is a conventional microscope in which a nickel prism or Polaroid sheet is interposed in the light path below the condenser. This "Polarizer" converts all the light passing through the instrument into plain polarized light (light which vibrates in one optical plane only). A similar second prism termed "analyzer" is placed within the barrel of the microscope above the objective lens. When the analyzer is rotated until its axis is perpendicular to that of polarizer, no light can pass through the ocular lens, resulting in a dark field effect. The field will remain black if an isotropic or singly refractive object is placed on the stage. A birefringent object, however, will appear bright upon a dark background when examined in this manner.
Phase contrast Microscope:
Lack of contrast has always been a problem in biological work because the refractive indices of cytoplasm and its inclusions are similar. In normal microscopy the problem is solved by staining differentially but this is subject to numerous limitations. Phase microscopy provides a method whereby contrast is created by purely optical means. Refractive index is the measure of optical density of an object or the speed with which it is traversed by the light wave. Air e.g. has a refractive index of approximately 1.0, Water 1.3 and a glass about 1.5. In other words, light traverses fastest in air, more slowly in water and slower still in glass.
Interference Microscope:
It depends upon the ability of an object to retard light. However, unlike the phase microscope, which depends upon the specimen diffracting light, the interference microscope send two separate beams of light through the specimens, which are then combined in the image plane. After recombination, difference in retardation of light results in interference that can be used to measure the thickness or refractive index of the object under investigation.
Dark field Microscope:
This microscope utilizes a strong, oblique light that does not enter the objective lens. A special dark field condenser, in which no light passes through the center of the lens, is employed. Light thus reaches the object to be viewed at an angle so oblique that none of it can enter the objective lens. The field is therefore dark. However small particles present in the specimen will reflect some light into the objective lens and will appear as glistening spots. Thus, it is possible to visualize particles far below the limits of bright light resolution. The effect is similar to phenomenon of dust particles seen in a beam of sunlight entering a darkened room.
Ultraviolet Microscope:
Since ordinary optical lenses are practically opaque to ultraviolet rays of light, quartz lenses are used throughout the lens system of this microscope.
This microscope depends upon the differential absorption of ultraviolet light by molecules within the specimen and the results are recorded photographically. In principle, this system allows an improvement in resolution about twice that of light microscope. This system is useful for detecting proteins that contain certain amino acid and in detecting nucleic acids.
Transmission Electron Microscope (TEM):
The transmission electron microscope utilizes a system which in principle is analogous to that of light microscope. In electron microscope, the illuminating source is a beam of high velocity electrons, accelerated in vacuum. The beam is passed through the specimens and is focused upon a fluorescent screen or photographic plate by series of electromagnetic or electrostatic fields. The wave length of the electron depends upon the acceleration voltage used. At the voltage used routinely, the wavelength of electrons is of the order of 0.05 A° (Angstroms).
Scanning Electron Microscope (SEM):
It is a more recent development and unlike TEM, it does not depend upon electrons passing through the specimen under examination. The SEM bombards the surface of a specimen with a finely focused beam of electron. As the beam strikes a point on the specimen, deflected primary and emitted secondary electrons which originate from the surface are collected by a detector. The resulting signals are accumulated from many points to build up an image that is displayed on a cathode ray tube. Since the scanning electron microscope is characterized by a great depth of focus, it gives a three dimensional image of the surface of a bulky specimen. The electron microscopes (TEM and SEM) require special technique for preparing specimens for examination.
types of microscope
the eyepiece
The four main types of microscopes are the Light Microscope, Electron Microscope, the Transition electron microscope and Scanning electron microscope.
five types of microscopes are: A compound light microscope,the stereo microscope,the electron microscope,a simple microscope(similar to a magnifying glass,and a compound microscope.
There are many. Simple microscope, compound microscope, light microscope, scanning electron microscope, Transmission Electron Microscope, Dissection microscope, etc,but all together there are about 20 different types of microscopes.
types of microscope
the eyepiece
There are six different types of microscopes used in the life science. There is the light microscope, phase contrast microscope, fluorescent microscope, electron microscope, atomic force microscope, and scanning tunnelling microscope.
The four main types of microscopes are the Light Microscope, Electron Microscope, the Transition electron microscope and Scanning electron microscope.
There are many. Simple microscope, compound microscope, light microscope, scanning electron microscope, Transmission Electron Microscope, Dissection microscope, etc,but all together there are about 20 different types of microscopes.
Light microscope Electron microscope
five types of microscopes are: A compound light microscope,the stereo microscope,the electron microscope,a simple microscope(similar to a magnifying glass,and a compound microscope.
There are many. Simple microscope, compound microscope, light microscope, scanning electron microscope, Transmission Electron Microscope, Dissection microscope, etc,but all together there are about 20 different types of microscopes.
There are many. Simple microscope, compound microscope, light microscope, scanning electron microscope, Transmission Electron Microscope, Dissection microscope, etc,but all together there are about 20 different types of microscopes.
1.digital microscope 2.stereo microscope 3.compound microscope 4.electron microscope 5.laboratory microscope
Light microscope Electron microscope
The to types of microscope are as following : 1. Simple microscope 2. compound microscope differences between these both is as following: simple microscope has one Len but compound microscope has two Len.