the visking tubing is useless and we need an alternative. can u helpful human beings help please? we are in the middle of a chaotic crisis trying to find the reason for osmosis. please help you kind human beings :) i hate you bye -from the scientists of Mars :
fine glucose molecules can pass through the wall of the visking tube.
gray
We are interested in increasing our use of alternative energy, and have been considering getting solar panels for our house. Alternative energy tax credits may mean that the cost will be lower when we get a tax rebate after buying solar panels.
No. It's more like a cathode ray tube.
Tan Stopper
fine glucose molecules can pass through the wall of the visking tube.
visking tubing
Cannot pass through visking tubing: sugar starch lactose sucrose Can pass through visking tubing: Iodine Glucose Maltose
The water in a Visking tube represents the bloodstream in the body. The selective permeability of the Visking membrane simulates the function of capillaries in the body, allowing only certain molecules to pass through, mimicking the exchange of substances between the blood and tissues.
If you add saliva inside a Visking tube, the enzymes in the saliva will begin to break down larger molecules present in the solution into smaller molecules. These smaller molecules will be able to pass through the selectively permeable membrane of the Visking tube, while larger molecules will be left behind, resulting in a process similar to digestion.
it is different because widts of the tube and intestine may vary
can someone tell me what is good about visking tube and whats bad about it asap because i need to give my homework by tmor and my homework relates 2 that
A Visking tube works through the principle of osmosis, where solutes move from an area of higher concentration to an area of lower concentration through a semi-permeable membrane. In the tube, the membrane allows water to pass through while retaining larger solutes inside, facilitating the separation of molecules based on their size.
Put a sucrose solution into the visking tube and fasten the ends, then place it in water (at different temperatures). The varying temperatures would quicken or slow the rate of diffusion (osmosis). Then using iodine, you put some in the water that the visking tube was in and if it turns dark blue/black the more sucrose has diffused. This can be put into a calorimeter to check the intensity for different temps. You should find that the higher the temp. the higher the rate of diffusion (because particles are excited and have more kinetic energy and move more). Hope this helps =) Sana (17 yrs)
Visking tubing is a type of semi-permeable membrane tubing used in dialysis and other separation techniques. It is made from cellulose or other synthetic materials and is used to separate molecules based on their size and charge. The tubing allows small molecules to pass through while retaining larger molecules, making it useful for purification and concentration of biological samples.
You may be thinking of the blood capillaries. Like visking tubing, their walls are able to let substances diffuse in and out. This is also true of the cell membranes. However both of these are much more permeable than visking tubing. The kidney contains semi-permeable membranes which allow urea to pass through but not other substances such as proteins.
Visking tubes can typically be found at scientific supply companies, online retailers that specialize in laboratory equipment, or possibly at a university or research institution that uses them for experiments.