?
Starting at the compressor;Low pressure vapor refrigerant is compressed and discharged out of the compressor.The refrigerant at this point is a high temperature, high pressure, superheated vapor.The high pressure refrigerant flows to the condenser by way of the "Discharge Line".The condenser changes the high pressure refrigerant from a high temperature vapor to a low temperature liquid and leaves through the "Liquid Line".The high pressure refrigerant then flows through a filter dryer to the Thermal Expansion valve or TXV.The TXV meters the correct amount of liquid refrigerant into the evaporator.As the TXV meters the refrigerant, the high pressure liquid changes to a low pressure, low temperature, saturated vapor.This saturated vapor enters the evaporator and is changed to a low pressure dry vapor.The low pressure dry vapor is then returned to the compressor in the "Suction line".The cycle then starts over.
The boiling point of water is dependent on the atmospheric pressure. If you increase the pressure - for example, in a pressure cooker - the boiling point can be raised considerably. At high altitudes, the boiling point is significantly lower. At sea level, pure water boils at 212 degrees Fahrenheit which is the same as 100 degrees Celsius.
Water boils at 212o F at standard pressure.
Gas expands when heated and shrinks when cooled. If the gas inside a closed cylinder is cooled, it will shrink, so it will push against the walls less. Therefore, less pressure.
The principle of refrigeration is to remove heat from one area (i.e inside your fridge) and locate it to another area (i.e outside of your fridge). Air is not brought in from the outside of the fridge the heat is absorbed by the evaporator inside the fridge which has refrigerant inside it, this refrigerant at low pressure is at low temperature inside the evaporator so the heat from the product inside the fridge is absorbed by the evaporator (as heat always transfers from the hotter object to the colder object) which has a fan to circulate the air around the fridge. Then the refrigerant is pushed around the pipework by the compressor to the condenser where the refrigerant is hot from the heat out of the fridge, because the outside air will be lower than that of the pressurized refrigerant the heat is absorbed by the ambient air which leaves the refrigerant cooler and lower pressure so when its back into the evaporator it can absorb more heat and expel it into the ambient air. There are 5 main components in a normal refrigeration system like on your fridge:- Compressor Condenser Expansion Device or Capillary tube Evaporator Thermostat The compressor compresses the refrigerant gas. This raises the refrigerant's pressure and temperature, so the heat-exchanging coils outside the refrigerator allow the refrigerant to dissipate the heat of pressurization. As it cools, the refrigerant condenses into liquid form and flows through the expansion valve. When it flows through the expansion valve, the liquid refrigerant is allowed to move from a high-pressure zone to a low-pressure zone, so it expands and evaporates. In evaporating, it absorbs heat, making it cold. The coils inside the refrigerator allow the refrigerant to absorb heat, making the inside of the refrigerator cold. The cycle then repeats.
The internal pressure of the cylinder would depend on the temperature of the refrigerant. At 100 degrees Fahrenheit, the pressure of R-410A refrigerant would be approximately 212 psi at equilibrium.
The internal pressure of a cylinder containing R-410A refrigerant with one ounce of liquid will depend on various factors such as the temperature-pressure relationship for R-410A and any external conditions affecting the temperature of the refrigerant. However, at 100 degrees Fahrenheit, the pressure of R-410A is approximately 228 psi.
The internal pressure of the cylinder containing R-410A refrigerant would be approximately around 186 psi when sitting in a 100 degree Fahrenheit environment. This pressure value is based on the saturation pressure of R-410A at 100°F. Make sure to consult a pressure-temperature chart for accurate readings.
Refrigerant pressure decreases in a refrigerant cylinder while charging with vapor because vapor has a lower density compared to liquid refrigerant. As vapor is introduced into the cylinder, it displaces the liquid refrigerant, causing the pressure to drop as the overall density of the refrigerant in the cylinder decreases.
The refrigerant cylinder pressure is typically higher than the system pressure, which allows the refrigerant to flow from the cylinder into the system. By opening the valve on the refrigerant cylinder, the higher pressure inside the cylinder forces the vapor refrigerant into the lower pressure system. This creates a flow of refrigerant into the system until the pressures equalize or until the desired amount of refrigerant has been added.
Refrigerant pressure in a graduated cylinder is maintained by adjusting the flow of the refrigerant entering the cylinder. A valve connected to the cylinder regulates the flow of refrigerant, allowing the pressure inside the cylinder to be controlled. Monitoring and adjusting the valve ensures that the desired pressure level is maintained during the experiment.
Lighter, as the refrigerant is boiled off, and colder, as it has absorbed heat, and has a lesser pressure to reflect the current temperature / pressure relationship for the type of refrigerant
The refrigerant cylinder pressure is kept above the system pressure by regulating the flow of refrigerant from the cylinder into the system. This is typically achieved using a charging hose with a metering device or valve that controls the rate of flow. By adjusting the flow rate, the pressure in the cylinder can be maintained higher than the system pressure during charging.
Lighter, as the refrigerant is boiled off, and colder, as it has absorbed heat, and has a lesser pressure to reflect the current temperature / pressure relationship for the type of refrigerant
Add refrigerant vapor on the low side of the system ,the compressor raises the pressure of the refrigerant on the high side of the system and lowers the pressure on the low side
Add refrigerant vapor on the low side of the system ,the compressor raises the pressure of the refrigerant on the high side of the system and lowers the pressure on the low side
200.4 Psig