The measurement of the force of gravity acting on an object is weight. The weight of an object (or the weight of an amount of matter) is the measure of the intensity of the force imposed on this object by local gravity.
A measure of the force of gravity would be the product of mass and the
acceleration. The unit of which gravity is measured is called a Newton, one
newton is about the same measure of force as 3.6 ounces.
Weight
Force is the product of mass (scalar) and acceleration (vector): F = ma. Weight
is a special case of that formula, where you substitute the acceleration of
gravity, g, for a. We can therefore write: W = mg.1
For example, if an object has a mass of 10 slugs2, its weight near the surface of
the Earth is 10 x 32.2 (ft/s2) = 322 pounds (pound-force). If an object has a
mass of 10 kilograms, its weight near the surface of the Earth is 10 x 9.8 (m/s2)
= 98 newtons.
You can measure the force of gravity on an object (i.e., its weight) by putting it
on a scale.
Strictly speaking, the Force due to gravity is always measured between two
objects. The acceleration due to gravity ('a') in the above discussion is a special
case of acceleration that occurs due to the force of gravity present at sea level
on Planet Earth.
We can calculate the gravitational force between any two objects using the
following formula
Fg = G (m1 x m2) / r2
Where:
Fg - is the force due to gravity
G - is the universal gravitational constant
m1 - is the mass of the first object
m2 - is the mass of the second object
r - is the distance between the centres of the two objects
When using the SI units, G is 6.67 x 10-11 N m2 / Kg2
1. Hypercritically we should say to substitute -g for a in the equation, because many physicists think of g as a negative quantity, inasmuch as it's a vector in the downwards direction; that is, it is directed toward the center of the Earth. When dealing with weight and the acceleration due to gravity, one must be careful to be consistent in assigning the signs.
2. Whenever possible, use the slug, not the pound-mass, in making calculations of mass. The whole pound-mass/pound-force thing is infuriatingly confusing for students. (And some teachers, too.)
Answer: mass x 9.8 meters/second/second. mass x acceleration is force and acceleration due to gravity is 9.8m/s/s. If you take a cannonball weighing 20lb and one 30lb, they would fall at the same rate but one has more force or energy in its motion.
Additionally, the force of gravity at earth's surface measured upon the scale must be added with that force of gravity which is effected upon us by the spin of the earth. (Honk! That's not a force of gravity. In fact, the spin causes no force at all.) For example, the force of gravity at the equator due to our velocity comes by law of Newton to 18.24 lb for a person of 165 scale weight. This then must be added to a total of 183.24 lb as the factual total of his or her gravitational pull.
accelerates upward, and may shoot up out of the water.If the buoyant force is equal to the force of gravity, then the object floats right there.
If we have a force acting on a body and we know what that force is, and we also know that the force is gravity, we can solve because we know the force gravity exerts on a mass. If we take the total force acting on the body and divide it by the force of gravity per one unit of mass, we can find the number of units of mass that cause gravity to act on the object. We have 1033 Newtons of force acting on the object. Gravity pulls down with a force of 9.8 Newtons on 1 kilogram of mass. Our 1033 Newtons divided by 9.8 Newtons per kilogram = 105.41 kilograms
Gravitational Pull, push, or force.
weight
Your question isn't exactly stated correctly, but the result that I believe you are looking for is that, the object will be in Orbit around the Earth. This happens when the Centrifugal Force (outward from the rotation) balances out against the Pull of Gravity (Inward). For a body rotating about the Earth, the inward Force would be the Force of Gravity, which would account for the Centripetal Force. Gravity is 'taking the place of' the piece of string that holds an object in place when it is swung around in a circle.
That's what's usually called the object's "weight", at least on Earth.
In our daily life on Earth, we call that the object's "weight".
If the force of gravity increases, the weight of an object will increase because weight is directly proportional to gravity. The mass of the object will remain the same, but the force of gravity acting on it will be stronger, resulting in a higher weight measurement.
Weight The unit of measurement for gravitational pull is the newton.
Weight is the measurement of gravitational force on an object, relevant to Earth.
The measurement of weight is affected by gravity.
Which term describes how much space a substance occupies? volume Not sure how that question relates to the one initially asked, but the answer to 'How is measurement of weight different from measurement of mass?' is weight includes the force of gravity. Weight Includes The Force Of Gravity (A+)Weight is the measurement of the force of gravity in relation to mass, while mass is the measurement of matter in an object.
Yes, weight, or more precisely mass*, does have an impact on force. The impact is something like this: an object moving at a constant speed will have more force than an object traveling at the same speed with less mass.So, more mass equals proportionately more force.*Mass is a direct measurement of the amount of stuff in an object. Weight is the measurement of the apparent force of gravity on an object.
The mass of an object determines the strength of its gravitational pull, as described by Newton's law of universal gravitation. Weight, on the other hand, is the force of gravity acting on an object's mass. The greater the mass of an object, the greater the force of gravity pulling it towards another object with mass.
The measurement for how much gravity pulls on an object is its weight, which is typically measured in units such as pounds or kilograms. Weight is the force exerted on an object due to gravity pulling it toward the center of the Earth.
The measurement of matter that depends on the force of gravity is mass. Mass is a fundamental property of an object that quantifies the amount of matter it contains, and it is commonly measured in kilograms.
The measurement of the force of gravity is called weight.