Melting requires energy input or absorption because liquid water has more energy than solid water.
distillation. Boiling the solution requires more energy than the energy content of the ethanol present.
The stronger the intermolecular forces, the higher the boiling point, because more kinetic energy is needed to break these intermolecular forces apart.
first the liquid has to be heated to its boiling point (every element has a different one) then heat makes the molecules more spaced and moving around faster (heat is energy) and it becomes a gas
it requires more energy to pull because the load is heavier than the effort.
as you go higher above sea level, pressure decreases. Due to the decrease in pressure, the temperature needed for water to boil is less than it is than it would be at sea level. Thus, it would take less heat energy for the bonds to break and become a gas than it would in an environment with more pressure.
because substances boil at a higher temperature than when it melts. therefore, boiling takes more energy than melting and more energy takes more time.
Boiling takes longer than melting because it requires more energy to break the intermolecular bonds in a substance and convert it from a liquid to a gas. In contrast, melting only requires enough energy to weaken the forces that hold the molecules together in a solid. The process of boiling involves the entire substance reaching its boiling point, whereas melting can occur at specific points within the substance.
The boiling point of an element is often higher than its melting point because it takes more energy to separate the molecules in a liquid and turn them into a gas. In the case of potassium, the boiling point is higher than the melting point because the forces holding the potassium atoms together in a liquid state are stronger than in a solid state.
IMF (intermolecular forces) affect the boiling and melting points of a substance by influencing the strength of the bonds between molecules. Stronger IMFs lead to higher boiling and melting points because more energy is required to overcome these forces. Weaker IMFs result in lower boiling and melting points as less energy is needed to break the intermolecular interactions.
Energy is required in the melting process because high is needed to melt something
distillation. Boiling the solution requires more energy than the energy content of the ethanol present.
The stronger the bonds between molecules; the higher the melting/boiling points. This makes sense if you think about it, melting/boiling is splitting up the molecules - the stronger they are bonded the more energy you will need
The latent heat of vaporisation of water requires more energy. This is because on melting, the intermolecular bonds in water are only weakened whereas on boiling, the bonds are completely broken, which requires a larger amount of energy.
Melting and boiling points are higher when intermolecular forces (such as hydrogen bonding, dipole-dipole interactions, or London dispersion forces) are stronger. These forces hold molecules together, so more energy is required to overcome them and change the state of the substance. Conversely, weaker intermolecular forces result in lower melting and boiling points.
The temperature at which the particles of a substance have enough kinetic energy to transform from one phase to another is called the phase transition temperature. This temperature varies depending on the substance and the phase transition, such as melting, boiling, or freezing.
No, 4 cups of boiling water would have more thermal energy than 2 cups of boiling water. The amount of thermal energy is directly related to the quantity of water and its temperature. More water requires more energy to heat it to boiling temperature, resulting in higher thermal energy.
More or less of a melting and boiling point than what? Water? Iron? Hydrogen? More information needs to be provided before this can be answered.